
Intelética 1(2) (2024), 1-15
Revista de Inteligencia Artificial, Ética y Sociedad

ISSN: 3020-7444

© Los Autores. Open Access, bajo Licencia Creative Commons (CC BY-NC).

INTELETICA

https://inteletica.iberamia.org/

La regla del vecino más cercano como alternativa para inyectar

ruido a mensajes encriptados por el algoritmo: Noised Random

Hexadecimal

Edgar Rangel-Lugo [1] , Kevin Uriel Rangel-Ríos [2]

[1] Tecnológico Nacional de México. Instituto Tecnológico de Ciudad Altamirano.
[2] Tecnológico Nacional de México. Instituto Tecnológico de Ciudad Altamirano.

[1] erangel_lugo@hotmail.com
[2] kgvppro@gmail.com

Abstract The theft of digital data problem is receiving growing attention. This situation can arise if at least one of
the cybersecurity strategies are not updated periodically (e.g., the employment of inadequate or static encryption
methods). It has been observed in several practical domains that may produce an important losses in the
organisation's finances. In the present paper, several aspects related with the subject are studied and experimental
results are here shown. We recommend the replacement of static encryption method by another dynamic alternative.
Moreover, simultaneously was employing a noisy injection to the ciphertext previously created by the static
strategies instanced in the organisations. The advantage of a dynamic encryption methods is creating a different
ciphertext result after of each execution, with the same plain text input. Novel proposal based on nearest neighbor
(1-NN) for ciphering of the information dynamically with noisy injection in hexadecimal format and comparison
results with traditional strategies (AES, RSA, 3DES, RC4 and DES) are also introduced.

Resumen El problema de robo digital de datos está recibiendo gran atención. Esta situación puede presentarse
cuando una de las estrategias de ciberseguridad no es actualizada periódicamente (por ejemplo, el uso de algoritmos
de cifrado obsoletos o estáticos). Ello se ha observado en varios dominios prácticos, que puede producir importantes
pérdidas en las finanzas de las organizaciones. En el presente artículo, son estudiados varios aspectos relacionados
con dicha área. Además, se muestran resultados experimentales que nos permiten recomendar una alternativa para
reemplazar el método de encriptado de datos estático, por una variante dinámica que puede inyectar ruido a mensajes
cifrados por el algoritmo obsoleto o estático que actualmente se utiliza en las organizaciones. Un método de cifrado
dinámico, permite generar diferentes resultados, en cada ejecución, para una misma secuencia de entrada de texto
plano. Por último, en este trabajo se introduce una nueva propuesta sobre el uso de la regla del vecino más cercano
(1-NN) para el cifrado de datos dinámico con inyección de ruido en formato hexadecimal y se comparan resultados
con cinco algoritmos estándar (AES, RSA, 3DES, RC4 y DES).

Palabras clave: Metodología Random Caesar, criptografía, la regla del vecino más cercano, formato hexadecimal.
Keywords: Random Caesar methodology, cryptography, nearest neighbor rule, hexadecimal numbers.

1 Introducción

El problema de robo de datos digitales, en las organizaciones esta recibiendo gran atención. En la práctica se han
observado grandes pérdidas económicas cuando se presenta una situación de dicha índole, particularmente en
instituciones que no cuentan con algún mecanismo de seguridad implementado. Una alternativa muy popular para

2 Intelética 2 (2024)

ayudar a ese problema, es conocida como cifrado de datos, cuyo estudio corresponde a una de las área de las ciencias
computacionales, dentro del campo de la seguridad informática, ya que, existe una área conocida como
ciberseguridad [1]-[5] que en su nueva modalidad de actualización, recibe el nombre de ciber-resiliencia. En dichas
áreas, ha preocupado el aspecto de mantener a salvo la información de las organizaciones, así como de usuarios
particulares, que manejan grandes volúmenes de datos. En dichos campos de estudio se encuentra ubicada la
criptografía, que proporciona herramientas necesarias para el cifrado de datos. La criptografía ha sido usada casi
simultáneamente desde el desarrollo avanzado del lenguaje escrito [6] y tradicionalmente jugó un rol fundamental
en la protección de las comunicaciones oficiales de los Estados, de los gobernantes y, principalmente, de las
instituciones militares [7]. El uso de criptografía, cifrado y descifrado de texto, fue iniciado alrededor de 1900 B.C.;
cuando los Egipcios comenzaron a aplicar procedimientos de correspondencia [4],[8]. Se entiende por cifrado de
datos, la ocultación de la información, mediante la traducción de un mensaje original convirtiéndolo en un tipo de
lenguaje o código, utilizando un alfabeto para cifrado/descifrado, que solamente podrá ser capaz de entender el
software especializado o persona autorizada. En actualidad, existen procesos dónde se usa la Inteligencia Artificial
(IA) para conseguirlo. Uno de los propósito de la IA es hacer que "la máquina piense" [9]-[13]. Para lograr este
propósito, la IA se apoya en diversas estrategias, técnicas, arquitecturas, modelos y paradigmas; algunos de ellos,
basados en métodos estadísticos [14], métodos heurísticos, por ejemplo: los árboles de decisión [15] o gráfos [16];
los métodos aleatorios [18]-[19], entre otros modelos. Un trabajo reciente, que utiliza IA, mediante métodos
supervisados, para el encriptado de datos [20], sugiere el uso de un algoritmo genético [4], [17]-[18] para lograr el
cifrado de datos con ruido, usando un formato denominado: Pseudo-Hexadecimal [20]. Un método supervisado
[9],[21], es aquel que aprende a partir de una muestra de entrenamiento (ME). Todo método supervisado consta de
dos etapas: El aprendizaje y la producción [9]-[13], [21]. Existen una gran variedad de métodos supervisados, por
ejemplo: árboles de decisión basados en el algoritmo C4.5 [15], la Regla NN (por sus siglas en inglés: Nearest
Neighbor), mejor conocida como: 1-NN o regla del vecino más cercano [22], las redes neuronales supervisadas [23]
entre otros. En la etapa de aprendizaje, casi todos los métodos (excepto la regla NN), entrenan el modelo usando la
muestra de entrenamiento (ME). Después, se desecha y se procede a trabajar con clasificación [9]. Entonces, las
redes neuronales, utiliza su modelo matemático para modificar los valores de sus enlaces, llamados "pesos" durante
el aprendizaje, y en la producción, usa los pesos o modelo matemático para clasificar y permitir la toma de
decisiones. Empero, la regla del vecino más cercano, no es obligatoria la etapa de aprendizaje [15], [24], que consiste
en la creación y/o preprocesamiento de la muestra de entrenamiento; para editar, reducir, descontaminar, por
mencionar algunas metodologías; y la etapa de producción, se usa la muestra de entrenamiento para la clasificación
de patrones.

Por otra parte, existen otros trabajos relacionados con criptografía donde se utiliza la regla 1-NN y/o algoritmos
genéticos (GAs). Por ejemplo, se han aplicado con éxito en la optimización y planificación de rutas de transporte
de redes de energía y detección de fraudes en el sector financiero, robótica, diseño de circuitos electrónicos,
aprendizaje automático [5]; así como, en criptografía con IA para comercio electrónico [4], en lo relacionado con
ataques sobre la transposición y permutación de cifrado [1], en algunos casos, aplicado a mono-alfabetos. Además,
existen otras alternativas [25] que proponen el uso de un algoritmo criptográfico simétrico aplicando GAs, Entropía
y Aritmética Modular, mostrando comparación de resultados con: DES: Data Encryption Standard, RSA:Rivest,
Shamir and Adleman y AES: Advanced Encryption Standard [25]. Del mismo modo, podemos encontrar en la
literatura, información acerca de otros tipos de métodos para cifrado de datos [26], basados en encriptación óptica
de información que usa mascaras aleatorios de fase; mientras que en otras propuestas [27]-[28] se utiliza una
criptografía digital basada en tecnología óptica. Algunos trabajos en este sentido, que usan llaves ópticas aleatorias
de fase en el plano de entrada y en el plano de Fourier, son los reportados en dichas investigaciones [26]-[27],
incluyendo una que recientemente presentó un método que usa la transformada wavelet [29]; aunque muchos
métodos o esquemas de comunicación segura se han desarrollado también, para cifrar información basándose en
sistemas discretos caóticos [30]-[33]. Por otra parte, existe otro trabajo [2] que muestra una visión de algoritmos
simétricos y asimétricos; aplicando ambas técnicas mediante el uso de RSA y 3DES, implementados en Visual
Basic. NET. También, existen los algoritmos de cifrado simétrico, discreto caótico [34], de mapa logístico. Este
algoritmo se aplicó para codificar una imagen. Otro algoritmo criptográfico, que presenta un proceso de
paralelización, es el algoritmo criptográfico GOST [35], utilizado para reducción del tiempo de ejecución de un
algoritmo criptográfico; mientras que en otras investigaciones se exponen algunos aspectos jurídicos del cifrado de
comunicaciones [7].

En lo relacionado con los algoritmos de cifrado; en el pasado, Julio César (Julius Caesar)[36]-[37], también diseñó
métodos seguros para transmitir en secreto información para gente importante en el campo de la milicia [4],[38].

Intelética 2 (2024) 3

De acuerdo con lo anterior, otros autores [36] presentan varios tipos de algoritmos de cifrado: por desplazamiento,
por sustitución, por permutación, cifrados de flujo, de claves privadas (como: DES, AES), de clave pública (como:
RSA), basados en funciones Hash (como: MD5, SHA1 y derivados), por mencionar algunos. Sin embargo, uno de
los algoritmos más populares en sus inicios, por ser sencillo de implementar [20], fue el algoritmo de desplazamiento
o sustitución, conocido como: Algoritmo Caesar o Cifrado del César [36]-[37]; el cual, tiene algunas variantes o
derivados, que han desarrollado distintos investigadores, donde se muestran algunas técnicas de encriptación
clásicas, tal como los cifrados del Cesar y Vigenère [37]; realizando un cripto-análisis sobre métodos clásicos de
cifrado. Sin embargo, al observar en la literatura, podemos darnos cuenta que, los cifrados basados en Caesar, ya
no son muy utilizados frecuentemente; destacando otras series populares como: MD5, SHA1 y derivados basados
en tablas Hash, principalmente para tareas de autenticación o integridad de datos; entre otros algoritmos populares,
empleados para el cifrado y descrifrado de información, como son el caso de: AES, DES, RSA, por mencionar
algunos [39].

Empero, aunque existe gran variedad de algoritmos de cifrado [19], [36]; en la práctica, los usuarios de Internet,
siguen estando vulnerables a ataques por parte de los ciberdelincuentes [20], ya que, algunos lenguajes de
programación soportan librerías para cifrado/descifrado de datos, lo cual, les permite a estos ciberdelincuentes
obtener información de manera rápida y fácil. Por tal razón, es importante que nos preocupemos por proteger los
datos usando nuevos algoritmos o métodos, incluyendo el uso de cifrado de la información, sobretodo utilizar
metodologías que no conozcan o soporten las herramientas libres o comerciales o "ilegales", que existen para el
descifrado de datos. Es por ello, que este trabajo de investigación, se considera importante realizar la exploración
del problema de inseguridad de datos, presentando algunas alternativas para el cifrado de información, que permita
confundir y/o retrasar, a estos ciberdelincuentes, en el momento de querer descifrar nuestra información, y por ende,
pueda mejorar la seguridad de datos en las organizaciones. Esta es precisamente, una de las hipótesis que guía este
trabajo, que ¿A través de la inyección de ruido en un mensaje cifrado, puede incrementarse el grado de seguridad,
por ejemplo, en una cadena de texto cifrada?. Una aproximación para resolver dicho problema, la podemos encontrar
en otras investigaciones [2], [20], [29]-[33],[39].

En lo que concierne con la presente investigación, se propone el uso de inyección de ruido, en formato hexadecimal,
introduciendo el nuevo concepto del uso de la regla del vecino más cercano [13],[22], para inyectar ruido en
mensajes cifrados, todo con el propósito de generar un paquete encriptado de mayor dificultad para ser descifrado.
Se comparan cuatro algoritmos, basados en el Cifrado del Caesar Aleatorio (Random Caesar [20]) con dos variantes
del clásico Cifrado del César. Los métodos de cifrado estudiados son: Cifrado Del César por desplazamiento y por
sustitución [36]-[37]; así como, las nuevas variantes propuestas: Hexadecimal Caesar, Hexadecimal Random
Caesar, Noised Random Hexadecimal, y por su puesto, Noised Random 1-NN Hexadecimal. Adicionalmente, con
el propósito de validar las técnicas en entornos reales con datos diversos y poder comparar su efectividad respecto

a otros métodos más tradicionales, se incluyen resultados de experimentos utilizando los algoritmos: AES
(Advanced Encryption Standard [25], [36], [39]), RSA (Rivest-Shamir-Adleman [2],[25],[36],[39]), 3DES (Triple
Data Encryption Standard [2]), RC (Rivest Cipher [2]) y DES (Data Encryption Standard [2],[25],[36],[39]).

2 Metodología

El tipo de investigación desarrollada en el presente trabajo, se considera experimental y exploratoria, teniendo en
cuenta que el algoritmo del César y variantes [36]-[37], [20], combinado con el uso de la regla 1-NN [22], [9]-[13],
en el cifrado de datos, ha sido poco estudiado [20] o no se había utilizado antes del desarrollo del presente proyecto,
o al menos no con el mismo enfoque o propósito que aquí se presenta. Los datos utilizados son del tipo número
entero, hexadecimales y cadenas de caracteres (para su procesamiento, en algunos casos se utilizaron estructuras de
vectores, en su formato de arreglos computacionales). Se trata de mensajes de texto que fueron convertidos en
vectores (de caracteres ASCII, o su correspondiente ordinal entero y/o hexadecimal, según sea el caso). La
recolección de datos fue llevada a cabo en forma heurística y de manera aleatoria. Primero, se diseñaron cadenas de
texto a cifrar, usando una estructura de árbol, para distinguir texto en dos idiomas: español e inglés; incluyendo (en
las secuencias de texto) algunos caracteres fuera del rango imprimible del código ASCII. Posteriormente, con esa
información, se ha creado una muestra de entrenamiento (ME), que es una matriz generada en forma aleatoria con
reemplazo, donde cada fila o patrón de entrenamiento, contiene el texto cifrado, cuya etiqueta de clase corresponde
al mismo mensaje de texto original (el diseñado antes de ser cifrado). El tamaño máximo utilizado en las cadenas
de texto a cifrar (columnas en la ME) fue de 255 caracteres (y por ende, las posiciones de los vectores de

4 Intelética 2 (2024)

procesamiento, también es de 255 como máximo; aclarando que cada posición del vector puede contener un valor
ASCII de un solo caracter; o si es de tipo entero puede almacenar un valor entre 0 a 255. Del mismo modo, los
vectores hexadecimales almacenan un valor de cuatro cifras, su correspondiente hexadecimal ASCII; es decir, la
secuencia FF se almacena como 00FF). Cabe mencionar, que a cada método de cifrado utilizado, se diseñó su propia
ME y fueron evaluados cada uno de manera separada. El procedimiento empleado para medir el acierto o llevar a
cabo la estimación del error, a cada una de las muestras, se le aplicó validación cruzada con cinco repeticiones (el
20% empleado como muestra de control y un 80% para evaluar el modelo, se usa como muestra de entrenamiento).
Además de las muestras de entrenamiento, se utilizaron otros materiales durante el proceso de desarrollo y
experimentación. Se trata de dos equipos de cómputo con sistema operativo Windows 10, velocidad de
procesamiento (CPU) de 2 GHz, capacidad de 8 GB en memoria RAM y un disco duro de 500 GB. Se instaló
lenguaje Java (Oracle JDK versión 21), y también, lenguaje Python 3, para la implementación del software que
realiza las operaciones de cifrado/descifrado de datos; el uso de dos lenguajes de programación, fue considerado
para llevar a cabo comparaciones de los resultados (textos cifrados), así como, de los tiempos de ejecución, y poder
verificar el grado de confiabilidad de los métodos de cifrado, que se describen más adelante. Al final, se hizo una
prueba comparativa entre los resultados y/o código fuente generados, y no se observó diferencia significativa. Los
algoritmos implementados en Python, funcionaron en las mismas condiciones y con comportamientos equivalentes
respecto a los codificados en Java. Solamente se observó, que era mejor iniciar la implementación primero en Java,
y después migrar el código a Python; para evitar demoras con el grupo de programadores, ya que, se detectaron
partes de código escrito en Java, que no podían traducirse a Python del mismo modo, tal es el caso de: abstracción,
uso de interfaces (implements), sobrecarga de métodos, polimorfismo, uso de ciclos "do-while", entre otras
operaciones; que al ser migradas de Java a Python, en algunos casos, se tenía que codificar distinto, y por ende, se
tuvo que regresar a convertir en Java su equivalencia, y ello demoraba el proceso de implementación. Los métodos
empleados (e implementados en lenguajes de programación: Java y Python 3) son los que se describen enseguida.

El primer método de cifrado, utilizado en la presente investigación, es el clásico Cifrado del César, conocido también
como Cifrado Caesar. Este algoritmo, es considerado de fácil implementación, que fue utilizado por El César, para
comunicarse con sus generales [37]. Se trata de un tipo de cifrado por sustitución, donde un símbolo de texto plano
(a cifrar) es sustituido por otro símbolo que se encuentra K posiciones siguientes en el mismo alfabeto. Por ejemplo,
suponiendo que el valor de K=1 y el alfabeto es el abecedario del español y el texto plano es: "holaquetal", se
procede a reemplezar cada letra del texto plano, por la siguiente del alfabeto (puesto que k=1), teniendo como
resultado, que la letra "h" se sustituye por "i", la letra "o" se reemplaza por "p", y así sucesivamente, hasta agotar
las letras que contiene el texto plano, obteniendo la secuencia cifrada o encriptada: "ipmbrvfubm" [36]-[37]. Una
definición formal para lograr el cifrado con este método es la siguiente: C[i] = S[i] + K (mod N) ; y el descifrado se
utiliza: D[i] = C[i] - K (mod N). Donde: S[i] es el carácter (en posición i) del texto plano; C[i] es el carácter i del
texto cifrado; D[i] es el carácter i del texto descifrado; el parámetro K es el número de posiciones siguientes para
poder calcular la operación de sustitución; mientras que N corresponde a la cantidad de símbolos del alfabeto; que
se refiere al módulo 26, es decir, el número de letras en alfabeto [36]; por ejemplo, iniciando desde la letra "A" y
terminando hasta la letra "Z", son 26 caracteres, si se eliminan del alfabeto español las siguientes letras: Ñ, CH, RR
y LL. Por lo tanto, si se utiliza este método con el valor K=3, se conoce como Cifrado del César, debido a su uso
reportado por Julio César [36]. El problema que tiene este algoritmo, es que hace vulnerable la seguridad de los
datos; ya que, un mismo símbolo del texto plano, se puede cifrar al mismo símbolo del texto cifrado. Por lo tanto,
si un criptoanalista conoce que para una secuencia cifrada se utilizó este método, podría localizar la letra que más
se repite en el texto cifrado, por ejemplo, si se observara que la letra "e" del alfabeto se repite más, podría realizar
la resta entre esas dos letras y hallar fácilmente el valor K para la sustitución [20], [37], [40]. Sin embargo, si
observamos en la literatura [36]-[37], podemos apreciar que existen varios métodos de cifrado, por ejemplo: por
desplazamiento y por sustitución, entre otros. El clásico Cifrado del César, algunos autores [37] lo describen como
un tipo de cifrado por sustitución; mientras que en otras investigaciones [36] se describe como un algoritmo por
desplazamiento. En la presente investigación, al clásico Cifrado del Caesar, se presenta como algoritmo de
desplazamiento, ya que, de esa manera ha sido su implementación (en Java y Python 3). En esas referencias [36]-
[37], no se describe el uso de caracteres fuera del alfabeto del módulo 26 (mod 26); por ejemplo: números y otros
símbolos de la tabla ASCII, son omitidos. Tampoco, se menciona si se debe distinguir o no, el uso de minúsculas o
mayúsculas. Por lo tanto, para poder comparar resultados con las fuentes citadas, también se hizo la implementación
"por sustitución", que se refiere en este artículo como: Cifrado Del César por sustitución, que fue el segundo método
de cifrado utilizado, aclarando que se aplicaron modificaciones en la implementación, para que "realmente" se
trabajara "por sustitución", algo parecido a las ecuaciones que presenta el "Criptosistema 3" [36]. Por lo tanto, en la

Intelética 2 (2024) 5

presente investigación, la implementación del Cifrado del Caesar por sustitución, para obtener la secuencia cifrada,
se puede definir formalmente como: C[i] = Z[i] (mod 26). Donde: Z[i] se obtiene como: Z[i]=D[t], solamente si:
S[i]=A[t] (distinguiendo en el alfabeto A[t] las mayúsculas y minúsculas); en otro caso se asigna: Z[i]=S[i] (es decir,
conserva el caracter original de la ocurrencia actual en S[i]). Cabe aclarar que el alfabeto A[t] tiene una extensión
de "mod 26", pero ahora se distinguen las mayúsculas y minúsculas. La variable i avanza en función del tamaño de
la secuencia S[i] (del texto plano); mientras que la variable t avanza en función del alfabeto A[t] o D[t], que en este
caso su valor mayor es 26, por usar un módulo N=26. El procedimiento se realiza por sustitución del caracter
localizado en alfabeto A[t] siendo reemplazado por el caracter del segundo alfabeto D[t] que está ubicado en la
misma posición de A[t], para finalmente ser guardado en Z[i]. Es por ello, que en esta variante "por sustitución",
permite la incorporación de caracteres que no estén dentro del rango de mod 26 (copiando el mismo caracter S[i]
dentro de la secuencia de texto cifrado C[i]). Otra aclaración al respecto, es el uso de D[t], que se trata de un segundo
alfabeto para realizar el cifrado/descifrado de datos, el cual, consiste en un alfabeto con desplazamiento de K, cuyo
valor debe ser menor o igual que 26. Para obtener este segundo alfabeto se realiza la operación: D[t]=A[t+K]; si el
valor de (t+K) es mayor que mod 26, se regresa a la posición inicial de A[t], y desde ahí, continúa trabajando como
si se tratara de una estructura de cola circular. En esta investigación, un valor de K mayor que 26, se ajusta como
K=26, lo que permite darnos cuenta de algún error en el cifrado de datos, debido a que, el resultado de C[i]
corresponde a la misma información guardada en S[i], esto es, en caso de ocurrir error al localizar un caracter dentro
del alfabeto A[t] o D[t], según sea el caso. Por último, para obtener el descifrado, se puede definir como: R[i]=Z[i]
(mod 26); es decir, solo se intercambian los alfabetos: A[t] por D[t], sustituyendo S[i] por C[i], despejando del
siguiente modo: S[i]=C[i]; Q[t]=A[t]; A[t]=D[t]; D[t]=Q[t]; posteriormente, se procede realizando las mismas
operaciones del proceso de cifrado, obteniendo en R[i], el texto descrifrado.

El tercer método de cifrado utilizado en esta investigación, referido como: Hexadecimal Caesar (Cifrado Caesar
Hexadecimal), cuyo procedimiento, es un derivado del Cifrado del César, implementado con la variante "por
desplazamiento". En este aspecto, existe una diferencia, ya que, ahora se omite el uso del alfabeto, y en su lugar, se
procede sumando el valor K (de desplazamiento) utilizando directamente los valores de la tabla ASCII del texto
plano S[i], pero operando con el número correspondiente en hexadecimal. El resultado será una cadena concatenada
de números en formato hexadecimal. Para obtener el cifrado usando Hexadecimal Caesar, se puede definir
formalmente como: C[i]=(String) Hex((Ord(S[i]) + K) , Num) (mod 95); y para obtener el descifrado se puede
utilizar: D[i]=Hex((Ord(C[i]) - K , Num) (mod 95). Donde: S[i] es el texto plano a cifrar; C[i] contiene los datos
cifrados; D[i] contiene los datos descifrados; mientras que Num se refiere a las cifras hexadecimales a emplear (por
ejemplo, para Num=2 y ASCII=255 indica el hexadecimal FF, si Num=4 el hexadecimal sería: 00FF). El valor de
K indica el desplazamiento que debe ser menor o igual a 129 (de lo contrario, se ajusta como: K=129). El módulo
95 o mod 95, significa la extensión del alfabeto, pero no en términos de utilizar un vector para realizar
desplazamiento (porque se omite), sino que, ahora se refiere a los caracteres ASCII válidos a considerar (se usan 95
caracteres de la tabla ASCII, del 32 al 126, que inicia con el espacio y termina con la tilde). Suponiendo que el
mayor valor ordinal de S[i] fuera 126, al ser sumado con el máximo valor de K=129; tenemos que: 126+129=255,
es decir, no excede el valor 255 de la tabla ASCII. Los valores en S[i] fuera del rango del mod 95, no representan
problema, ya que, en ningún momento se realiza una conversión ASCII de un valor hexadecimal que ha sido
aplicado previamente algún desplazamiento de K, solo que en este último caso, se recomienda trabajar conversiones
de hexadecimales con Num=4. Por último, el uso de las funciones o "cast": Ord, Hex y String ; permiten convertir
valores ASCII a ordinales, enteros a hexadecimales; y , de hexadecimales a cadena de caracteres; respectivamente.
En esta investigación, se ha utilizado cuatro cifras para operaciones en hexadecimal, para permitir el uso de
caracteres extendidos de la tabla ASCII, que al ser convertidos a ordinal, el lenguaje de programación puede regresar
un entero fuera del mod 255 del ASCII (por ejemplo, el ASCII=178 es un caracter extendido imprimible como ' ▓
' ; pero al ser convertido en hexadecimal, se observó en plataforma Windows, que no se traduce como: ASCII=178,
sino que regresa un número muy grande, por ejemplo: 9714, cuyo valor hexadecimal rebasa las dos cifras: 25F2).

El cuarto método de cifrado utilizado en esta investigación, es denominado Hexadecimal Random Caesar (Cifrado
Caesar Aleatorio Hexadecimal), el cual, fue inspirado en una de las versiones de Random Caesar (Cifrado del César
Aleatorio), que han sido presentadas en otras investigaciones [20], debido a que, dichas propuestas resultaban muy
prometedoras en el aspecto de incrementar la seguridad de los mensajes cifrados, presentando una nueva aportación
al clásico Cifrado del César (por desplazamiento), a través de métodos aleatorios aplicados sobre el desplazamiento
K, denominado ahora K[i], por la razón de que, en esta nueva modificación son varios desplazamientos que se
realizan, cada uno de ellos (aleatorio con reemplazo) por caracter incluido en el texto plano S[i]; además de contar
con una segunda fase en el procedimiento, que consiste en crear un empaquetado con inyección de ruido ordinal o
tipo ASCII, existen al menos tres versiones, que difieren en la extensión del módulo N (comúnmente, N=255 versión

6 Intelética 2 (2024)

estándar, N=95 segunda versión con rango ASCII de 32 hasta 126; y , N=120, la versión II extendida con rango
ASCII de 30 a 150, para inyectar ruido). Esta modificación, se considera que puede ayudar un poco a impedir que
un "cyber-delincuente", logre descifrar fácilmente el texto C[i], ya que, para conseguirlo tendría prácticamente que
“adivinar” cuál valor de desplazamiento se ha utilizado en cada caracter incluido en C[i], o de lo contrario, tendría
(el cyber-delincuente) que llevar a cabo severas pruebas (exhaustivas) para conseguir el descifrado de datos [20].
Sin embargo, en Hexadecimal Random Caesar, no se adopta la incorporación de ruido en el empaquetado cifrado,
solo se incluyen los componentes: C[i] y K[i] (seleccionado aleatorio con reemplazo, para aplicar desplazamientos
sobre S[i] y generar C[i]), pero en esta nueva aportación, en lugar de realizar empaquetados del tipo ordinal/entero
o caracter (ASCII), ahora se trabaja con su correspondiente número hexadecimal, empleando cuatro cifras, para
permitir el cifrado de caracteres fuera del rango mod 255. El proceso de cifrado para Hexadecimal Random Caesar
se puede definir formalmente como: PAQ_HRC = ((String) E) (mod 120) ; y para obtener el descifrado: D[i] = (
(char)(PAQ[x] - PAQ[x+1])) (mod 120). Donde: E = EmpaquetadoFinal = (Hex2 ((int) C[i]) + Hex2 (K[i])) ;
teniendo en cuenta que, en este caso, el signo "+" refiere a la función concatenar y que se trata de un par de valores
en hexadecimal de cuatro cifras. La secuencia C[i] corresponde a la operación: C[i] = S[i] + K[i] (mod 120) ;
mientras que S[i] es el texto plano y K[i] es el vector (aleatorio con reemplazo) que contiene los desplazamientos,
uno para cada S[i] y cada valor K[i] debe ser menor que 105 (para no exceder el ASCII=255, ya que, en mod 120,
el máximo valor es ASCII=150, por lo tanto, la operación: 105+150=255). Las funciones o "cast" String, int, char
y Hex2 ; permiten convetir de hexadecimal a cadena de caracteres, de caracter ASCII a entero, de entero a caracter
y entero a hexadecimal (de cuatro cifras), respectivamente. PAQ_HRC es un vector que guarda pares hexadecimales
(de cuatro cifras) y contiene el paquete cifrado (incluye cada C[i] con su respectivo K[i]). El vector PAQ es generado
por la asignación: PAQ = ((int) (SPLIT (PAQ_HRC , 4)). La función SPLIT divide a PAQ_HRC, convirtiéndola
a vector de pares, en formato hexadecimal de cuatro cifras; mientras que PAQ[x] corresponde al valor de caracter
cifrado C[i] y PAQ[x+1] es el correspondiente desplazamiento (K[i]).

El quinto método de cifrado utilizado y referido en esta investigación como: Noised Random Hexadecimal (Cifrado
Aleatorio Con Ruido Hexadecimal), esta basado su procedimiento en la fusión de sus predecesores: Hexadecimal
Random Caesar y Cifrado del Caesar por sustitución. Lo anterior significa, que se utiliza el paradigma basado en
alfabetos, pero ahora, con formato hexadecimal. A diferencia de Random Caesar [20], el cifrado Hexadecimal
Random Caesar no incluye la incorporación de "ruido intencional" en el empaquetado, solamente son concatenados
(por pares hexadecimales de cuatro cifras) los valores correspondientes a la secuencia de caracteres cifrados C[i]
acompañados cada uno de su respectivo desplazamiento K[i]. El único "ruido" que podría llegar a agregarse, sería
de manera no intencional (aleatoria), por los caracteres no imprimibles que estuvieran fuera del rango mod 95, ya
que, debemos recordar que Hexadecimal Random Caesar, trabaja con módulo 120 (es decir, los caracteres no
deseables o con "ruido" serían en este caso, los que se encuentren dentro del rango: 30 a 32 y 127 a 150). En lo que
concierne con Noised Random Hexadecimal, también trabaja con mod 120 y mediante el uso de números
hexadecimales de cuatro cifras, pero debido a que, es un algoritmo de sustitución, ya no se emplea el vector de
desplazamientos K[i], sino que, en su lugar, se definen dos alfabetos, uno para realizar el cifrado y otro para el
descifrado. No debemos confundir el método Hexadecimal Random Caesar con la propuesta Noised Random
Hexadecimal, ya que, difieren en el tamaño del empaquetado de cifrado, así como, en el proceso de encriptado y
desencripción de datos. Podemos definir formalmente el proceso de cifrado con Noised Random Hexadecimal del
siguiente modo: EMPAQUETADO = (String) (Hex2 (Alfabeto1[i]) + Hex2 (Alfabeto2[i]) + Hex2 (
CifradoParcial[i])) (mod 120). Donde: El operador "+" refiere, en este caso, a la función concatenar de manera
intercalada, de acuerdo con el contador "i", el cual, puede tener un valor máximo de 120, en caso de que la longitud
del texto plano sea menor o igual que la longitud del Alfabeto1[i], de lo contrario, se actualiza "i" con el valor
correspondiente a la longitud del texto plano a cifrar, que en esta investigación se utiliza como parámetro k (que no
corresponde a desplazamientos). Los vectores: Alfabeto1[i] y Alfabeto2[i] contienen caracteres ASCII dentro del
rango correspondiente a mod 120 (y por ende, su inicial longitud máxima es de 120 localidades, excepto si longitud
de texto plano es mayor). El contenido de cada vector es seleccionado de manera aleatoria sin reemplazo (no se
realizan comparaciones sobre el grado de similitud de los alfabetos, ya que, se entiende que en la práctica, es muy
difícil que ambos alfabetos contengan la información en el mismo orden, salvo casos de excepción). Las funciones
o "cast": Hex2 y String, permiten convertir un vector de ordinales o caracteres ASCII a formato hexadecimal de
cuatro cifras; y, convierte un vector a cadena de caracteres, respectivamente. Por último, CifradoParcial[i] =
Alfabeto2[i] , si y solo si, el texto plano S[k] se encuentra en Alfabeto1[i], de lo contrario se asigna: CifradoParcial[i]
= Hex2 (S[k]). Cuando S[k] es longitud menor que Alfabeto1 [i], este último tiene longitud inicial de 120, por lo
tanto, se tendrá que rellenar con "ruido" las localidades de CifradoParcial[i] (se trata de números aleatorios,

Intelética 2 (2024) 7

seleccionados con reemplazo, con formato hexadecimal); debe rellenarse, iniciando desde posición k hasta llegar al
valor de "i". Si la longitud de S[k] es mayor que Alfabeto1 [i], en este caso, se tendrá que asignar i=k , insertando
nuevas localidades a los vectores: Alfabeto1 [i] y Alfabeto2[i] , para rellenar con "ruido" (hexadecimal,
aleatoriamente con reemplazo) estas nuevas localidades vacías. Por otra parte, para el descifrado de datos con
Noised Random Hexadecimal, se utiliza la información del EMPAQUETADO, separando los vectores (que están
intercalados) y buscando cada caracter del cifrado parcial en el Alfabeto2[i], regresando a su valor original
localizado en la misma posición del Alfabeto1[i], siendo convertido de número hexadecimal a su valor de caracter,
correspondiente en la tabla ASCII.

El sexto método de cifrado utilizado en esta investigación, denominado como: Noised Random 1-NN Hexadecimal
(Cifrado Aleatorio Con Ruido 1-NN Hexadecimal), es considerado una nueva propuesta, debido a que no se reporta
en la literatura su aplicación, o al menos no, con el mismo propósito que aquí se presenta. El cifrado Noised Random
1-NN Hexadecimal, es sucesor del método Noised Random Hexadecimal, y aunque el proceso para cifrado se lleva
a cabo de manera similar, ambos modelos, difieren en el tamaño del empaquetado cifrado, debido a que, Noised
Random 1-NN Hexadecimal, agrega un elemento adicional denominado Patrón[i], el cual, consiste en inyección de
"ruido" (hexadecimal), siendo incorporado dentro del mismo empaquetado. Para realizar el cifrado con Noised
Random 1-NN Hexadecimal, puede definirse formalmente como: Empaquetado1NNHex = (String) (Hex2 (
Alfabeto1[i]) + Hex2 (Alfabeto2[i]) + Hex2 (CifradoParcial[i]) + Hex2 (Patrón [i])) (mod 120). Donde: El
Empaquetado1NNHex es el paquete cifrado en formato hexadecimal de cuatro cifras (dicha conversión se realiza
con la función o "cast": Hex2). Los primeros tres vectores del empaquetado (Alfabeto1[i] , Alfabeto2[i] y
CifradoParcial[i]), son obtenidos de la misma forma que se lleva a cabo con Noised Random Hexadecimal; mientras
que el Patron[i] es el vecino más cercano [13], [20], [22], [41]-[43] del CifradoParcial[i]. Suponiendo que
ME[f][i+1] es una muestra de entrenamiento de (i + 1) columnas y f=100 filas (ya que "i" depende del tamaño de la
longitud del texto plano S[k]). La posición (i + 1) refiere a la columna que guardará la información de etiqueta de
clase (por usar una selección aleatoria con reemplazo, se entiende habrá oportunidad de repetir su valor, teniendo
de este modo, una muestra de entrenamiento de varias clases). Cada fila es considerada como un patrón "ruidoso"
que contiene ordinales o caracteres ASCII (seleccionados aleatoriamente con reemplazo con mod 120). Al buscar
el vecino más cercano de CifradoParcial[i] en ME[f][i+1] se obtendrá como resultado Patrón[i] (es decir,
aplicaremos la modalidad de eliminar su etiqueta para incorporar al empaquetado cifrado, ya que, la etiqueta solo
sirve "para simular" que existe una distribución por clase). Este Patrón[i], es la secuencia de caracteres ordinales o
ASCII más parecida al texto cifrado, y por ende, al ser incorporada (como "ruido") en el Empaquetado1NNHex
cifrado, se entiende, que ello puede confundir a un "ciber-delincuente" que quisiera descifrar el mensaje. Por último,
para el descifrado de datos, se separa la secuencia del Empaquetado1NNHex, buscando cada caracter del cifrado
parcial en el Alfabeto2[i], siendo sustituido por el correspondiente en Alfabeto1[i], convirtiéndose el hexadecimal
a valor caracter de la tabla ASCII.

Un último método utilizado, no es para realizar cifrado de datos, sino para evaluar los tiempos de ejecución y la
estimación del error. El método utilizado se le conoce como: Método π (PI) o Validación Cruzada [9]-[13], [20],
que consiste en los siguientes pasos: (1) Se extrae de la muestra de entrenamiento, un grupo de patrones 'ME-Pi' de
tamaño 'Pi'. (2) El MODELO se entrena con la muestra de entrenamiento ('ME') sin incluir a 'ME-Pi'. (3) El modelo
se entrena y/o evalúa con 'ME-Pi'. (4) El proceso se repite para: i = 1, 2, ..., (n / p). Donde: 'ME-Pi' se le conoce
como muestra de control ('MC'), que sirve como prueba o test (en esta investigación, con la modalidad del encriptado
de datos, no se realiza operaciones sobre la muestra de entrenamiento con este conjunto de datos 'MC', solo se extrae
para poder realizar la estimación de la velocidad de cada modelo de cifrado, usando sesgo optimista); mientras que
'Pi' es el porcentaje extraído de la muestra de entrenamiento (en los experimentos fue utilizado un valor de 'Pi'=20%).
El porcentaje para 'ME' utilizado fue del 80%. El modelo se refiere a cada método de cifrado de datos, siendo
evaluado de manera separada. El término "entrenar o evaluar el modelo", en esta investigación, no se hace
empleando 'ME-Pi', sino que se refiere a aplicar descifrado de datos sobre cada fila de la 'ME' (solo al 80% sin los
patrones 'ME-Pi'), con el propósito de medir los tiempos de cifrado/descifrado, así como, observar si hubo algún
error en el descifrado. Se entiende que 'p' es el porcentaje utilizado para 'ME-Pi', que va en función de n (tamaño de
la ME). En esta investigación, el punto (4) se realiza repitiendo cinco veces la operación, siendo extraído de 'ME"
un 20% de 'ME-Pi' distinto en cada repetición.

Adicionalmente, con el propósito de comparar resultados, y poder validar las técnicas aquí propuestas, y su

efectividad, respecto a otros métodos más tradicionales, fueron realizados nuevos experimentos usando las mismas

muestras de datos, referidas previamente, haciendo uso de la validación cruzada, descrita anticipadamente,

trabajando de manera separada, cada uno de los siguientes métodos o algoritmos de cifrado de datos: AES

8 Intelética 2 (2024)

(Advanced Encryption Standard [25], [36], [39]), RSA (Rivest-Shamir-Adleman [2],[25],[36],[39]), 3DES (Triple
Data Encryption Standard [2]), RC (Rivest Cipher [2]) y DES (Data Encryption Standard [2],[25],[36],[39]). La

versión empleada de AES [2],[36] fue: AES-256 [44]-[45]. La variante utilizada para RC [2],[36] ha sido la

denominada como: RC4 (Rivest Cipher 4) [44]-[45], y con respecto a RSA [2],[25],[36],[39], se ha utilizado: RSA-

2048 [44]-[45].

3 Resultados y discusión

Los experimentos realizados con los métodos de cifrado, descritos previamente, fueron llevados a cabo utilizando
muestras de entrenamiento (ME) generadas de manera aleatoria con reemplazo, donde cada fila contiene el texto
cifrado, cuya etiqueta de clase corresponde al mismo mensaje de texto original (sin descifrar); tal como se ha descrito
previamente en la sección de la metodología. Cabe agregar, que el número máximo de filas en la ME fue de 1000
ejemplares y el tamaño máximo utilizado como columnas corresponde a la longitud de la cadenas de texto a cifrar,
sin rebasar el límite de 255 caracteres (excepto el algoritmo 3DES, que usa estrictamente una longitud igual a 24
bits), se agregó dos columnas adicionales: una para conocer el tiempo de cifrado (en milisegundos) y otra columna
para poder indicar posteriormente el error, y de esta forma, facilitar el cálculo de los promedios. Del mismo modo,
cada cadena de texto a cifrar, puede ser almacenada como vector o texto plano (aunque en este caso, fue necesario
convertir a vector tipo ordinal o entero o caracteres tipo ASCII o hexadecimal de cuatro cifras, según el método de
cifrado empleado). Cabe aclarar, que para cada método de cifrado utilizado, se diseñó su propia ME y fueron
evaluados cada uno de ellos, de manera separada. El procedimiento empleado para medir la estimación del error,
así como, para estimar la velocidad promedio de cada método de cifrado de datos, fue la Validación Cruzada [9]-
[13], [20], siendo aplicado de la forma en que se describe en la metodología.

Durante el inicio de la experimentación, fueron estudiados los métodos de cifrado que no cuentan con
desplazamiento K[i] aleatorio, los cuales, se aplicaron a la muestra de entrenamiento correspondiente, para cada
uno de ellos; tal es el caso del clásico Cifrado Caesar Por Desplazamiento De K, el tradicional Cifrado Del César
Por Sustitución (usando módulo 26, en ambos casos) y Hexadecimal Caesar (usando módulo 129). Los valores de
desplazamiento K utilizados para la aplicación de estos métodos sobre su muestra de entrenamiento particular
fueron: K=4, K=11, K=95, K=120 y K=255; lo anterior, para poder comparar resultados con otras investigaciones
[20], [36]-[37], esta información la podemos apreciar en Tabla 1. Posteriormente, se estudiaron y llevaron a cabo
los experimentos, con los métodos de cifrado, cuyo valor de desplazamiento K[i] es aleatorio con reemplazo, dichos
modelos son: Hexadecimal Random Caesar, Noised Random Hexadecimal y Noised Random 1-NN Hexadecimal,
todos ellos usando módulo 120; dichos resultados se muestran en la Tabla 2. Los experimentos descritos
anteriormente, fueron realizados con el programa de cómputo escrito en lenguaje Java; y se repitieron utilizando el
programa de cómputo en lenguaje Python 3, observando que no hubo diferencia significativa en los resultados. En
su mayoría, los experimentos tuvieron éxito; sin embargo, se considera, que falta profundizar un poco más,
extendiendo el uso de cadenas de texto plano con longitud mayor que 255 caracteres. Por último, con el propósito

de comparar resultados, y poder validar las técnicas aquí propuestas, y su efectividad, respecto a otros métodos

más tradicionales, fueron realizados nuevos experimentos usando las mismas muestras de datos, referidas

previamente, haciendo uso de la validación cruzada, descrita anticipadamente, trabajando de manera separada,

de los siguientes métodos o algoritmos de cifrado de datos: AES (Advanced Encryption Standard [25], [36], [39]),

RSA (Rivest-Shamir-Adleman [2],[25],[36],[39]), 3DES (Triple Data Encryption Standard [2]), RC (Rivest Cipher

[2]) y DES (Data Encryption Standard [2],[25],[36],[39]). Solo que en este caso, los experimentos fueron

realizados, implementando, solamente en lenguaje Python 3, cada uno de los algoritmos, antes mencionados (ver

Tabla 3). En los experimentos realizados con AES-256, los parámetros asignados fueron los siguientes: uso del

modo de encadenamiento de bloque de cifrado, conocido como: CBC (Cipher Block Chaining Mode), con un vector

de inicialización de IV= "0000000000000001" y uso del estándar de criptografía de llave pública: PKCS7 (Public

Key Cryptography Standard #7), como método de relleno (padding) con 128 bits, empleando codificación en

formato hexadecimal, un tamaño de clave (KeySize) de 256 bits y una clave secreta (Key) con valor de

"00000000000000000000000000000001". Para el caso del RSA, durante la experimentación se utilizó formato de

archivo de clave criptográfica de correo privado mejorado, conocido como: PEM (Privacy-Enhanced Mail), con

extensión de 2048 para definición de clave pública y privada (Public/Private Key RSA 2048), haciendo uso del

estándar de criptografía de llave pública basado en relleno (padding) de cifrado asimétrico óptimo, conocido como:

PKCS1_OAEP (Public Key Cryptography Standard with Optimal Asymmetric Encryption Padding), utilizando una

Intelética 2 (2024) 9

clave secreta (Key) con valor de "00000000000000000000000000000001", obteniendo como resultado cifrado,

una secuencia en formato hexadecimal.

Tabla 1: Resultados preliminares de los métodos de cifrado estudiados que cuentan con desplazamiento de K
estático (ejemplo usando como texto plano: we will▓ meet at Midnight▓)

ALGORITMO DE

CIFRADO
VALOR

DE K
TIEMPO

(ms)
ERROR

(%)
TEXTO CIFRADO

Tradicional

Cifrado Caesar

Por

Desplazamiento

De K

4 59 1 AI AMPP▓ QIIX EX QMHRMKLX▓
11 30 1 HP HTWW▓ XPPE LE XTOYTRSE▓
95 47 2 WE WILL▓ MEET AT MIDNIGHT▓

120 31 2 WE WILL▓ MEET AT MIDNIGHT▓
255 29 2 WE WILL▓ MEET AT MIDNIGHT▓

Promedio 39.2 1.6

Tradicional

Cifrado Del

Cesar Por

Sustitución

4 17 0 ai ampp▓ qiix ex Qmhrmklx▓
11 10 0 hp htww▓ xppe le Xtoytrse▓
95 10 1 we will▓ meet at Midnight▓

120 10 1 we will▓ meet at Midnight▓
255 10 1 we will▓ meet at Midnight▓

Promedio 11.4 0.6

Cifrado Caesar

Hexadecimal

4 4 0 007b00690024007b006d00700070259700240071006900690078002400650

07800240051006d00680072006d006b006c00782597

11 4 0 00820070002b0082007400770077259e002b007800700070007f002b006c00

7f002b00580074006f0079007400720073007f259e

95 3 0 00d600c4007f00d600c800cb00cb25f2007f00cc00c400c400d3007f00c000d3

007f00ac00c800c300cd00c800c600c700d325f2

120 4 0 00ef00dd009800ef00e100e400e4260b009800e500dd00dd00ec009800d900

ec009800c500e100dc00e600e100df00e000ec260b

255 4 0 00f800e600a100f800ea00ed00ed261400a100ee00e600e600f500a100e200f

500a100ce00ea00e500ef00ea00e800e900f52614
Promedio 3.8 0

TOTAL : 18.1333 0.7333

En los experimentos con RSA-2048, se utilizó como clave pública la siguiente: "-----BEGIN PUBLIC KEY-----.Proc-Type:
4,ENCRYPTED.DEK-Info:DES-EDE3-
CBC,17BCFA414000D9A4xHqpW1evXi+q0MRPBfeZS9vQaGz/416cNrMIxMzBJ53G2R8psQza2bFOxds/MOLYqt3IwlV04Bvihv7lVqoLDfPD0287
28oULYSehkCjsmUGgRl7v+Pe4cfz/ODhIGdNuS98JsTDZxUGbtoSvJoP/vS7+BISCwcLrrpt6BKtkkzu/1j2LG+W5J+7WqE3fnEtW9dn2y0Wbx044Th/
RzLhUHhzmfWpEB5oRSF94WAzX9l01M2O954RWxR2sZUxJ+iF/46ruiz4L5EbDI5j9PUI7VxqJXwDemWDa8SJ9+mLY5Vz1NNh8Yl2Gh++PEu2J

DUPNQB2CRAx/j03+2nUuumHy6/XA/LkPeWGw9ULzaOTHXM1a1kExbLhTy//kCFqQCd+6wSZLQVt2Hg= -----END PUBLIC KEY-----". La

clave privada que se ha empleado, se muestra enseguida: " -----BEGIN RSA PRIVATE KEY----- Proc-Type: 4, ENCRYPTED DEK-
Info: DES-EDE3-CBC,
2C3EEE4347B3AA0C5QnfB6QTy2PttNbDcMg5f+i7sfSuUw+WRwezScOhQIsi9BtlMYmitEeMjxpT/eH/DzNnBCPguByVPvwAcJT1eZrehLBrqy4Fk
by5jd5CVDXMVpYjNdRUoVy4TDVb2Y4HEMHrxpkqE08BwHNLQM5ULl/0tIJglDeyJbsOa2/mIFpMB2OEMFO9wDZka3hQPZesmFlt+EJmpEUD
ni0UnyvUqzYC4zLOmWKHfcZ8NbPl3lyW+DyvWGq3CIjE7Flx+nyDB9MXylKyaBhfOQiuAcaQ3Yj4bYKvczxTBf/hSX7n9DdgejXhTnEPUaW8eX
RAgXBdVgvf3oyLe8ygktS2o75aR4zcDmIjflm/eCLrQPB8qv6arDp7lOvsLdCzToAnU1JciLcEi4LV5gajDoPJYfaVrvF+ZYsBdybKpf6hg31txdAZxA
MErDFXwp/+B6021bk85x+MW440LY7BjYITPE+EXt9aCb7AiKRaredKyjM+/2bxkkOQ4HF8fkLNvQrKeggLF1xQUIMUu9I9qBjQR1pztBmhyxC2
Hs+HnVFFvM+mtoIgDOZtj7NrOi+vNxnjUr4+q405R7MKWSRUIA5fQFf7UHDbC2FtpLxrWPXc4UvHYpYK9caMbwjqJqzUlgUo0FZz6bopv0eCkT
GccyItOJ5VZAI8BkxseAAC3UNeG85tdhBQ3/zbBqiM98dR3GNzVor6CaDqqBvbhDUBe+ef/k6ScxVjtx/xUu+VBEGD1sMTB+bjlwRmTifhnqyXeG2
mx8RGQrUhWMOFrDmegxl1WQ+zKD0aJ2QzL56VyGP01DuJtx8QfijRKvbtVzD8qQgCpv5Mz2WBCYhfrxT4DdDxDSER4FKoyK+Tx65WGiJWK
MrA1rR+mR1nGnoziVa7XRWAzT7swTXkwtKkYOcrv3fhEHPmsdy/BpMDFjw+JvTD3tdDOpRj5zG2yZFvK9WJTAB+fWGaG5HY4QgG2i4UrokG
lyHC9afXTWUa4Nnj6nYq7ksVppGccnsP3ZI+8kL6Mh4ho+538xr4ZY0RPUxqyHUrHQN6sjrCg/3L/ahgmh9oclIC8gQozf6EY1AqhX7nCiWevTmFJh
makEWZq4LB3DyyYrPCOjJA8dDVaCbERhEw2DydM6bp/MHjor0X8RkeygxfhcCc6p8KMxfADu/92cWaw1GAkpFh1iBmmj6uaVZZy+bnAN1jA8t
0srcv4E6Ff0ZmsZD0QdXazjXplG69aIMK3Snd8nT/dE86GqMgKoCYNAXeF+T1fa+AiEV4JuJIuRrZjknmoBFl+4qIZzUgbH6MsxKtZ5SjZgzjaZdEX
YpZwecnzPIOm+QdQtfpQbUJMsMdT4iwBtzJfKSqvCD05Ax3sifTfLzdyWvOvip9eEXFr9hTLSzgC88a922oqycp3erXQ/OGTFDmTrsIohu9U1hGTup
T4mciErCYKoU/hmvHLjRbZRXan+1oVcHuE4xrrTYRz9tB+JzxjQ1YJsPGo8nF3f+qV9/jV6WjzZPKd47QE4sBz++VPRZWEVso/Ek0pkljSXzACCly

1OxrEu9oWr3UCm5nIoXym+ttPxbXjJYLLaZ/vARB5lQb3QCiydihsDxWfLCw -----END RSA PRIVATE KEY-----". Estas claves fueron

generadas en lenguaje Python 3, utilizando la librería "pycryptodome" [46]. En lo que concierne con la

experimentación de RC4, se utilizaron valores estándar definidos por la librería "pycryptodome" [46] de Python 3.

También, fue empleado el formato hexadecimal con codificación: UTF-8 y como clave secreta (de 128 bits), se

asignó un valor de "00000001".

10 Intelética 2 (2024)

Tabla 2: Resultados preliminares de los métodos de cifrado estudiados que cuentan con desplazamiento de K
dinámico (ejemplo usando como texto plano: we will▓ meet at Midnight▓)

ALGORITMO

DE CIFRADO
Test TIEMPO(

ms)

ERROR

(%)
TEXTO CIFRADO

Hexadecimal

Random

Caesar

Test 1 11 0 00e0006900c3005e004a002a00c9005200ac004300ae004200d5006925d700440057003700b4004700ce00690

094002f00dd00690058003800a10040009600220059003900b6006900d2006900cd006900d70069009e003500

b4004d00d1006900c6005225fc0069

Test 2 10 0 00a2002b0093002e0052003200b900420091002800b3004700d5006925c50032008900690090002300b4004f0

0be005900dd006900890069008e002d00ca00560089006900900043008e002500b3004f00b40046009b003200

c2005b00d1006900dd006925ba0027

Promedio 10.5 0

Noised

Random

Hexadecimal

Test 1

88

0

004d006f007a0078003e00640023008e006c0077007a007a0030002d003c00560083003a003a0060003a00740026259300

520061006c0035005e00280065006400640055006e0064005a0053002600430048006c0047004d00870038008900260036

0027006c0040007d006f00790065003c0092009100350045007c0021007d008d003c0086004c0032004900410025004c003

f0026009300922593008e008500fe0025006200fd0063007500fe0050003700fd008a008b00ff0021005100fd0027006b00fd

0095004700fe0069003c00fd0024002300fe0068002500ff003e004a00ff0039007700fd0057007200fe007b003000fe002e0

07100ff0032001f00fe0088005f00fe0046006900fe005f003400fe004b003d00fe0084005200fd006a008400ff0089003600fd

0083007e00fe0051006600fd0087008000ff005d006800fe008f008600ff0082004600fe0054008c00fe006e002100fd007f00

6d00ff003f007400fd006f002900fd002f004b00ff0080006300ff005e005700fd0075005a00ff0094006700fe008d004200ff00

66004500fe0070002c00ff007a009300ff007e002e00fd0061008700ff0029001e00fe002b007900fe0020006c00fd00760054

00ff0022004300fe0044005800fe0059009400fd002a005b00ff001f005600fd002d003900fe004f007300ff0037003300ff004

8009500fd0072008100fd006b008a00fe002c004f00fe0060003800fe004a002a00fd0033005c00fd0053009000ff003d002f0

0fe0041007b00fe004e005d00ff003b003100ff006c003a00ff0031004900fd0090002000fe0071002400fd0026007800fe007

3008200fd0085007f00fd0042007600fe005b004e00fd0034002200fe0028008f00fd005c004400fe0081002b00fe006d0028

00fe003c005500ff008c005000ff008b007000ff0091008800fd0062006a00fd007c004000ff0064003500fd001e005900ff006

7003200ff0058003b00fe

Test 2

96

0

008c0035004c00280090005900800049008700410041004c0058006a004d0090002600380068004500380023005d259300

8f008c00870046008d002d007800680059001e007c0059005a005a001e007a00290087002c008e0046006b0025001e0025

0062008700260039004b0045005f004d0031003e005c003c0072003b0073003f004d0043002b003c003f00670045004a006

d001e0022006025930035003100fd0075002a00fd0077004c00fd004e002700fe007e008900fd0049008000ff0094007b00ff

0021007a00fd0055005100fd002f006f00fd0067003c00fe0034008400fe0083008200ff0072004f00fe006f002100fe0069004

d00ff0091002200fe005e001f00fe0071008500fe0070006600fe0040004700fe0081005b00fe0095007500ff003d005e00fe0

063006b00fe0037002800fe0027007900ff005d007300fd0089003200ff0024003a00ff0093004a00ff0057007600ff004d004

b00ff003b002c00fe008b006400ff0088007400fe0048006c00fe003e006100fd0042002400ff008a006300fd0052005800fe0

08d007f00ff0050008100fe0053004000fd006c003800ff0036009100fd004f003700fe005f007e00ff0085008b00fd00200087

00fd0065005900ff0059004200fd006a008800fd0064005c00ff0087007700fd008e005200fd0044008f00fe002b004e00fd00

2d002300fe005b003400fe0056009400fe0039005300fe007b004800fe0066002000fd0082009200ff0092005700fe007d006

e00ff002e007d00fe0074001e00fd0086007800fe002a003d00ff0054003600fe0032005600ff006e003b00fd0033002e00fd0

07c008300fe005c009500fe0076004400fe004c009300ff003a005500ff006d002d00fd0051004300ff0029005000ff00790069

00fd007f008a00ff0047002f00fe001f003000ff0061004600fd004b005400ff0084007100fe0038008600fd0060007000fd006

2003300fd0030006500ff

Promedio 92 0

 Noised

Random 1-

NN

Hexadecimal

Test 1

101

0

0029007b004d008c0080005d0028007f007b009000240027003b0042004d0022005b005a002b005f006b00750088008700

3400510088002a007500592593009400350048002400770024008b003d006100890069002800460046007700280068004

30054008e0041008700530024006b001f007d004b004a002f001f008e0026003800570024004d008b0087006a002700550

03e002b003e003e00210038008f0025004a00760043007e0070002b007f005200260064008c0056005c0022007f0077004d

008e0086006300682593003e002a003100fe00fd0094004100fe00fe004f006b00fd00fd0060008900fd00fd006f002e00fd00

fd0074008e00fd00ff004b008000ff00ff008a009400fd00fe0042007f00ff00fe0090004500ff00fd0073002300ff00ff00820046

00fe00fe005e003300fd00fe0021008d00ff00ff0027007c00ff00fd005a003900ff00ff002d002700ff00fe004e007100fd00fe0

083007e00fe00fd0086008600fe00fd003d007400fd00ff0032008400ff00fd0071001e00fd00ff008d003f00fe00fe0092002a0

0fe00fd0057005b00fd00fe0033006f00fe00ff0022004300fd00ff002b005500fe00ff0053006700fd00fd003a006200fd00fe0

04d006a00ff00fd0091004400fd00fe006d003d00fe00fd0030008c00fd00fe0040006500ff00ff0093003200fd00fd00640038

00fd00fd003c003400fe00fd0037003b00fe00ff0059007800fd00fe004a005800ff00ff0061004b00ff00ff0041003500ff00fd0

031002000fe00ff005f002900fe00fd0051006000ff00ff0065002800ff00ff0058003600fe00fd0045008300fe00ff0078008a00

ff00ff006c008800ff00ff0067006400fd00ff0069002b00fe00fd0050003c00ff00fd007d009200ff00fd0095008500fd00fd0054

007900fe00fe0079005f00ff00fe0026007300fe00ff0081006300fe00ff006a003a00fd00ff003f008200ff00ff0044002d00fd00

fd002c009300fe00fd0048003700fd00fe0036004c00ff00fd0084003000fd00ff0066006c00ff00ff007c004e00ff00ff008f002f

00fd00ff0062004900fe00fe007a002500fe00fe004c005600fd00fe008c007200fd00fe0023004f00fd00fd0047008100fe00fe

0020002400fe00ff008e005200ff00ff0072006d00fd00fe0049002c00ff00fe005c007a00fd00fd0070006100fd00fd00880047

00fe00fe006e007600fd00fe005d008f00fe00fe0039005e00fd00fd0068002200fd00fe0076005000fe00ff0028009500fe00fd

002e009100fe00fe0085004000fe00fe007f006600fd00fd001e006e00fe00fd

Test 2 96 0 006f007f005f0092005f004b0066004800500063003a003100330092005f0039006c006d0051007e004f0060006d00720027

0082006d0078003200212593009500540093003a004a0072007d005b008c0067001f00660081005c002d0066008b008600

900095007c005b004f003a00350045008c008e0091002b003100950081004c004a003a005e001e0083005c008800390074

0051004400780022004d0091007d007a00850038003400610051006300580056001f00940061008e0076003e0094006500

9500340092008d259300290083006400fe00fe004d005c00ff00ff0028004400fe00fe0048007800fe00fe0075008600fe00fe

0068007600fe00ff006a007700fd00ff0064004d00fe00ff0063005000ff00fd0041005800fe00fd0057003b00fe00fe0059007e

00fd00fe0026002000ff00fd0021006e00fe00ff005e008b00fe00ff008c007100fd00fe0035004c00fd00ff008e001e00ff00fd0

036006f00fd00fe0055006900fd00fe008f005e00fe00fd0065006600fd00fd0023003000ff00fe0049002e00fe00fe00840045

00fd00fd003d002b00ff00fd007b005200fd00ff005a003600ff00fe002e004100ff00fe0043006800ff00ff007f006700ff00ff00

73003200fe00ff0091007c00fd00ff0071003d00ff00fd0024007000fd00ff006e008500fd00ff0020003a00fe00ff003c004e00f

e00fe002a008000ff00ff0089005900fe00fd001f004000fe00fe0031003300fd00fe0069005100fe00fe0029003e00fe00fe008

0003800ff00fe0025004600fe00ff0042003f00fe00ff0074009500fe00fe007c002600fd00ff0077005f00fd00ff008a003400fd

00fd0090004900fe00ff0079004300fd00fd0047006b00fd00fe0030009400fd00fe006d005b00ff00ff003e005300fe00fd003f

007300fe00ff0081003500fd00fe0060004800fe00fe007e003900fe00fe0040005500ff00fd0037006200fd00fe0022008900f

e00ff0062008400ff00fd0056007b00fd00ff0087009100fd00ff002f005400fe00fd0051002500ff00ff0070006c00ff00fd007a0

08a00fe00fd0038008800fd00ff0052006a00fe00fd0095007200ff00ff0044002300fe00fe0085004700fe00fd0076002400fe0

0ff003a002900ff00fd003b002700fe00ff004a004200fe00fe004b003700fe00fd006b002c00ff00fd008d005a00ff00ff004e00

2f00fd00ff008b002a00fd00ff0053005700fe00ff0066007900fe00ff002d007500fe00fd0093003c00fe00fe0082008100fd00f

d002c005d00fe00fe005d008f00ff00ff0046002800fd00fe0088008700ff00ff

Promedio 98.5 0
TOTAL : 67 0

Para el caso del algoritmo 3DES, se usó el modo de libro de código electrónico, conocido como: ECB (Electronic

Codebook Mode), con valor de "000000000000000000000001" como clave (secreta) de 24 bits, obteniendo la

secuencia cifrada en formato hexadecimal. Finalmente, los resultados cifrados para el algoritmo: DES, también

Intelética 2 (2024) 11

fueron en formato hexadecimal con codificación UTF-8, empleando una clave de 56bits con el siguiente valor:

"00000001" y usando el modo de libro de código electrónico, conocido como: ECB (Electronic Codebook Mode).
En lo que concierne a los tiempos de ejecución de cifrado/descifrado, fueron calculados para cada texto plano, en
cada repetición de la validación cruzada, y al final, se hizo un promedio. Los errores, fueron considerados al
momento de descifrado. Estamos en el entendido que la ME contiene el texto cifrado, acompañado del tiempo de
cifrado y una etiqueta que corresponde al texto plano a cifrar (así como, la columna que guarda el error, pero ello
se hace en tiempo de ejecución, ya que, inicialmente tiene cero). Por lo tanto, se procede descifrando el texto y si
no es igual que la etiqueta de clase, se procede a anotar un error en la columna correspondiente de la ME, todo ello,
es coordinado por cada repetición de la validación cruzada.

Tabla 3: Resultados preliminares usando algunos métodos o algoritmos de cifrado tradicionales (un ejemplo de
muestra, usando como texto plano: we will▓ meet at Midnight▓)

ALGORITMO

DE CIFRADO
Test TIEMPO(

ms)
ERROR

(%)
TEXTO CIFRADO

AES-256

Test 1 57 0 303030303030303030303030303030314e86f8918b532c730b96262c2a7739bade2d5c68c7e3e219bc5a943d0e

bd0cc0
Test 2 97 0 303030303030303030303030303030314e86f8918b532c730b96262c2a7739bade2d5c68c7e3e219bc5a943d0e

bd0cc0
Promedio 77.0 0

RSA-2048
Test 1 96 0 8ef526e608728054fa749463334a6e6bc7cb853aac33ea9e6612e2ddb9ccf7f2172ec8e87c3b893fd83dd0db6af0

4ab5118e25434280b7bcc4d03f34f029334470d09532a5663417bb092772e1ba44552f53d7f05059cc1cdbcea5d

c917b0762f4095974b222d36c6dd73e7b8313d55649c746b37238c94c809b00caed28590156c81329ebeff9098

6167ae916ee2a5596c1ef95afe47f57a5df8c947922418dbc67df6dfa1d700b1d0cceedddeca9e0cdf3f72f8fd2ac9

7c2b4c33c79de4c063251069957d4d7ed58e0988838773d9903686719473859259be20aaf0aa09d6f0a1eba818

beceb426393b204a6c42cc7a4d440f88aee97880ffaed78e93e8991
Test 2 121 0 b4de0256e0f25f994d03f30a130887f7074fc7a181dbb11c2d0d5d5d9b0234686ed546318c10bb0b1100fe05881

d59104bcf838e3817dfbfe9a303d2ac3eeaef37473b3f3b6c8461038a05d2408ff22f3d5c6498b9fe77740794aab5

9b0ff04174400719634c384ada8b19d619ed804c8f58bacfac1eec3897bb9057fc80cf27c108d8ab07d91fc828c0a

bedbd0556987a1789c9df6d963c23d6f5c8c411e75ce18bc129b1022c9899ff24c64493c0d5882a2b0e6fde129a8

4908b4f0226a476ebbeb7fbb949978d5ccae4b5cd3ea163ee8f728a17b6cb32070f0998af86c406824de74fe9e85

f2c379b5e94238375cfdf05a614e1b16aa1eea05e295e934c64
Promedio 108.5 0

3DES
Test 1 55 1 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7
Test 2 122 0 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7

Promedio 88.5 50

RC4

Test 1 20 0 949f2244e3ab422b0d24ea69bed4da930d0a89b2fdf9944895b73f9182666fd2
Test 2 31 0 949f2244e3ab422b0d24ea69bed4da930d0a89b2fdf9944895b73f9182666fd2

Promedio 25.5 0

DES
Test 1 28 0 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7f0a688c1d906a355
Test 2 39 0 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7f0a688c1d906a355

Promedio 33.5 0
TOTAL : 66.6 10

4 Conclusión

Los métodos de cifrado de datos con desplazamiento K estático, aquí estudiados (ver Tabla 1), aunque en algunos
casos, su proceso de encriptado es más rápido que las propuestas basadas en aleatoriedad (cifrado dinámico), así
como, los algoritmos tradicionales, se puede apreciar vulnerable la seguridad de dichos métodos estáticos, debido a
que, no presentan variaciones en el contenido para una misma cadena de texto plano a cifrar. En otras investigaciones
[20] se señala que este tipo de casos podrían ser descifrados usando un diccionario con uso de procesamiento de
lenguaje natural mediante inteligencia artificial. Además, dichas propuestas, cuando se usa módulos 95, 120 y 255,
no se logra cifrar el texto plano (ver Tabla 1). En cambio, los métodos de cifrado basados en aleatoriedad, ya sea,
por sustitución o por desplazamiento de K[i], se observa (ver Tabla 2), que en algunos casos, la diferencia promedio
de velocidades para el cifrado de datos, es mayor, pero no sustancial, ya que, no tarda en ningún caso más de un
segundo (1000 ms). Sin embargo, hay que recordar que los textos planos empleados son menores de 255 caracteres.
Empero, resulta más segura la información con cifrado aleatorio, ya que, el contenido del paquete, para una misma
cadena de texto, produce distinto resultado en cada ejecución, mientras que en las propuestas con inyección de ruido
hexadecimal, genera un paquete cifrado de mayor tamaño, pero ello lo hace menos vulnerable a ataques, en

12 Intelética 2 (2024)

comparación con el resto de los métodos, evaluados en esta investigación. Una desventaja de los métodos de cifrado
basados en aleatoriedad, aquí estudiados, es que pueden llegar a seleccionar, carácteres de la tabla ASCII que son
no imprimibles en pantalla, ello puede producir pérdida de información. Sin embargo, en esta investigación, las

propuestas basadas en módulo 95 y módulo 120, no presentaron dicho problema, al ser utilizados números

hexadecimales de cuatro cifras. En cambio, las técnicas o algoritmos tradicionales para el cifrado de datos, los

aquí estudiados, solamente uno de ellos (RSA-2048), logró reportar cifrados dinámicos (ver Tabla 3), pero demora

más tiempo en el proceso de cifrado, en comparación con las propuestas aleatorias, basadas en hexadecimal, aquí

estudiadas. Los resultados obtenidos con AES-256, no muestran ser dinámicos, ya que, genera siempre la misma

secuencia de cifrado como resultado, cuando se utilizan los mismos valores de la clave secreta y vector de

inicialización. Sin embargo, ello no indica que el cifrado sea inseguro, ya que, en los experimentos se observó un

0% de error. También, el algoritmo 3DES, no presenta resultados dinámicos en la secuencia cifrada. Además, el

proceso de cifrado tardó más tiempo que el reportado por AES-256. Adicionalmente, se observó la presencia de un

50% de error en el descrifrado de datos, cuando el texto plano de entrada contiene caracteres, cuyo valor ordinal

está fuera del rango de la tabla ASCII (en el ejemplo de prueba de la Tabla 3, se presenta en el texto de entrada el

caracter: '▓'). Otro factor observado, fue la presencia de error, cuando se utilizan entradas de texto plano mayores

al definido por 3DES, que en esta investigación se han delimitado a 24 bits (en este caso, se obtiene 100% de error,

al ser cortadas las secuencias de texto de entrada y ajustada a 24 bits). Del mismo modo, el algoritmo RC4, aunque

no reporta porcentajes de error, se observó que los resultados cifrados no son dinámicos. A pesar que su proceso

de cifrado es mucho más rápido (más del 50%) comparado con: AES-256, 3DES y RSA-2048. Adicionalmente, los

resultados de la secuencia cifrada reportados por el algoritmo DES, no presentan características dinámicas,

aunque se obtuvo un 0% de error. A pesar que su proceso de cifrado es más rápido que los algoritmos: RSA-2048,

AES-256 y 3DES, no logró superar en velocidad al RC4. En cambio, utilizando RSA-2048, se observó que regresa

un resultado dinámico, aunque tarda más tiempo en el proceso de cifrado que los algoritmos: AES-256, RC4, DES

y 3DES. En este caso, también se observó un 0% de error. Por último, con respecto a las nuevas propuestas

dinámicas, basadas en formato hexadecimal, con inyección de ruido, y teniendo en cuenta que los algoritmos: AES-

256, 3DES, RC4 y DES, no reportan resultados de cifrados dinámicos, en este contexto, los denominados como:

"Noised Random", superan las expectativas, en esta investigación, porque reportan siempre resultados dinámicos

distintos en cada ejecución del algoritmo, y aunque tardan más tiempo que: AES-256, 3DES, RC4 y DES, en el

proceso de cifrado de datos, superan la velocidad de los tiempos reportados por el algoritmo: RSA-2048 (ver Tabla

2 y Tabla 3), que en esta investigación, fue el único algoritmo de los métodos tradicionales, aquí estudiados, que

logró reportar secuencias de cifrado dinámicas distintas en cada experimento, modo similar a lo observado con los

métodos: "Noised Random" y "Hexadecimal Random Caesar". Sin embargo, esta última propuesta "no ruidosa",

además de reportar secuencias de cifrado más nítidas (menos extensas), logró superar en velocidad, al resto de las

técnicas (de cifrado dinámicas, aleatorias y tradicionales) en los tiempos para el encriptado de datos, entre un

2.4% y 10.33 % veces más rápido.

En general, todos los métodos de cifrado, aquí estudiados, reportan buen margen de acierto (excepto los algoritmos:
3DES y Cifrado Caesar con desplazamiento por K); y, la velocidad de cifrado, en promedio difieren
aproximadamente entre 35.4% y 88% milisegundos, para el caso de los métodos basados en desplazamiento de K y
K[i] aleatorio. Por último, observando resultados presentados por otros autores [20], podemos aprecia que discute
acerca del uso de un nuevo formato denominado Pseudo-Hexadecimal, el cual, se introduce a los alfabetos en el
paquete de cifrado, con la intención de inyectar ruido, este podría ser un trabajo futuro a desarrollar, llevando a cabo
la aplicación de los métodos aquí estudiados, usando dicho formato Pseudo-Hexadecimal.

Agradecimientos

Este trabajo fue financiado parcialmente por el Tecnológico Nacional de México, registrado con clave: 19329.24-
P.

Referencias

[1] Delman, B. (2004). Genetic Algorithms in Cryptography. Thesis for the Degree of Master of Science in
Computer Engineering. Rochester Institute of Technology (RIT Scholar Works). Department of Computer
Engineering.

Intelética 2 (2024) 13

[2] Mendoza, J.C. (2008). Demostración De Cifrado Simetrico Y Asimetrico. Ingenius. Revista de Ciencia y
Tecnología, núm. 3, pp. 46-53. Universidad Politécnica Salesian. Cuenca, Ecuador. ISSN: 1390-650X.
Disponible en: http://www.redalyc.org/articulo.oa?id=505554806007.

[3] Kalsi, S., Kaur, H., & Chang, V. (2018). DNA Cryptography and Deep Learning using Genetic Algorithm with
NW algorithm for Key Generation. Convergence of Deep Machine Learning and Nature Inspired Computing
Paradigms for Medical Informatics. Image & Signal Processing; In Journal of Medical Systems, volume 42,
Article number: 17. DOI: https://doi.org/10.1007/s10916-017-0851

[4] Reddaiah, B. (2019). A Study on Genetic Algorithms for Cryptography. International Journal of Computer
Applications (0975 – 8887). Volume 177 - No. 28, December. Department of Computer Applications. Yogi
Vemana University Kadapa, A.P, India.

[5] Sebas, C. (2023). ¿Qué son los Algoritmos Genéticos en las Inteligencias Artificiales?. Manuales y Tutoriales
de Informatica. Recuperado de: https://aprendeinformaticas.com/ia/

[6] Singh, S. (2000). Los códigos secretos. Madrid: Debate.

[7] Álvarez, D. (2019). Algunos Aspectos Jurídicos Del Cifrado De Comunicaciones. Derecho PUCP, núm. 83,
2019, pp. 241-264. Pontificia Universidad Católica del Perú. DOI:
https://doi.org/10.18800/derechopucp.201902.008. Disponible en:
http://www.redalyc.org/articulo.oa?id=533662765008

[8] Hebert, S. (s.f.). A Brief History of Cryptography. Disponible en: http://cybercrimes.net/aindex.html

[9] Rangel, E. (2002). Vecinos Envolventes para Variantes de la Regla del Vecino más Cercano. MS Thesis,
Instituto Tecnológico de Toluca, México. ["Variants For Nearest Centroid Neighbour"].

[10] Rangel, E., & Barandela, R. (2004). Nearest Centroid Neighbour, An Alternative in Pattern Recognition for
Detecting New Tasks in a Mobile Robot Simulator. Enviado a: 11th International Congress On Computer
Science Research (CIICC04). September 31, October 1, 2. Ciudad de México - México (Artículo En Extenso).
Disponible en: http://erangel.coolpage.biz/pappers/p2004.jpg

[11] Rangel, E., & Rodríguez, C. (2018). Un Estudio Con Variantes De La Regla NN, Como Alternativa En
Inteligencia Artificial Para Incrementar La Precisión En Clasificación De Patrones. Publicado En: Primer
Congreso Nacional De Investigación En Ciencia E Innovación De Tecnologías Productivas. Tecnológico
Nacional De México (campus: Instituto Tecnológico de Cd. Altamirano). Noviembre, 2018. Cd. Altamirano,
Estado De Guerrero, México. (Artículo En Extenso). Disponible en:
http://erangel.coolpage.biz/pappers/p2018b.jpg

[12] Rangel, E. (2019). Resultados Preliminares Con Variantes De La Regla NN, Como Alternativa En Inteligencia
Artificial, Para Clasificación Usando Muestras De Entrenamiento Desbalanceadas. Publicado En: Segundo
Congreso Nacional De Investigación En Ciencia E Innovación De Tecnologías Productivas. Tecnológico
Nacional De México (campus: Instituto Tecnológico de Cd. Altamirano). Noviembre, 2019. Cd. Altamirano,
Estado De Guerrero, México. (Artículo En Extenso). Disponible en:
http://erangel.coolpage.biz/pappers/p2019.jpg

[13] Rangel, E. (2022). La Regla De Los k Vecinos Más Cercanos (k-NN) Basada En Distancia De Manhattan
(City-Block) Para Mejorar La Clasificación De Patrones. Publicado En: Quinto Congreso Nacional De
Investigación En Ciencia E Innovación De Tecnologías Productivas. Tecnológico Nacional De México (campus:
Instituto Tecnológico de Cd. Altamirano). Noviembre, 2022. Cd. Altamirano, Estado De Guerrero, México
(Artículo En Extenso). Disponible en: http://erangel.coolpage.biz/pappers/edgarrangel2022.pdf

[14] Kanal, L. N. (1963). Statical methods for pattern classification. Philco Rept, originally appeared in T. Harley
et al., Semi-automatic imagery screening research study and experimental investigation, Philco Reports, V043-
2 and v043-3, Vol. I, sec. 6 and Appendix H, prepared for U.S. Army Electronics Research and Development
Lab. Under Contract DA-36-039-sc-90742, March 29.

[15] Ross-Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.

[16] Sánchez, J.S., Pla, F., & Ferri, F.J. (1997). Prototype selection for the nearest neighbor rule through proximity
graphs. Pattern Recognition Letters 18, 507-513.

14 Intelética 2 (2024)

[17] Skalak, D. B. (1994). Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing
Algorithms. In: Proceedings of the Eleventh International Conference on Machine Learning (ML94). Morgan
Kaufmann, pp. 293-301.

[18] Kuncheva, L. I., & Jain L. C. (1999). Nearest Neighbor Classifier: Simultaneous editing and feature selection.
Pattern Recognition Letters, 20, 1149-1156.

[19] Reddaiah, B. (2016). A Study on Pairing Functions for Cryptography. IJCA (0975-8887), Vol. 149, No. 10,
September, pp.4-7.

[20] Rangel, E., Rangel, K.U., Medrano, J., & Bernal, C.A., & González L. (2023). Algoritmo Genético Para Cifrado
De Datos, Basado En Un Nuevo Concepto Pseudo-Hexadecimal Con Inteligencia Artificial. Tecnológico
Nacional De México, Instituto Tecnológico de Cd. Altamirano. Sexto (VI) Congreso Nacional De Investigación
En Ciencia E Innovación De Tecnologías Productivas. Noviembre, 2023. Cd. Altamirano, Estado De Guerrero,
México. Disponible en: https://www.cdaltamirano.tecnm.mx/index.php/17-vi-congreso-nacional-de-
investigacion-en-ciencia-e-innovacion-de-tecnologias-productivas/140-tecnm-40

[21] Barandela, R., & Juarez, M. (2001). Ongoing Learning for Supervised Pattern Recognition. Submitted to
SIBGRAPI-2001, Brazil.

[22] Cover, T.M., & Hart, P.E. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Information
Theory, Volume IT-13, January, pages 21-27.

[23] Bruzzone, L., & Serpico, S.B. (1997). Classification of Imbalanced remote-sensing data by neural networks.
Elsevier Science B.V. , 0167-8655, 97. PH S0167-8655 (97) 00109-8.

[24] Eui-Hong (Sam), & Karypis, George (1999). Centroid-Based Document Classification: Analysis &
Experimental Results.

[25] Rodríguez, J. (2020). Operadores Genéticos Aplicados A La Criptografía Simétrica. Proyecto De Grado.
Universidad Distrital Francisco José De Caldas. Facultad De Ingeniería. Ingeniería De Sistemas. Bogotá,
Colombia.

[26] Javidi, B., Zhang, G.S., & Li, J. (1997). Encrypted Optical Memory Using Double-random Phase Encoding.
Appl. Opt. 36, 1054-1058.

[27] Rueda, A.S., & Lasprilla, M. (2002). Encriptación Por Conjugación De Fase En Un BSO Utilizando Señales
Ópticas De Baja Potencia, Rev. Col. Fís., Vol. 34, No.2, (2002), P.P.636-640.

[28] Rueda, J.E., Romero, A.L., & Castro, L.M. (2005). Criptografía Digital Basada En Tecnología Óptica. Bistua:
Revista de la Facultad de Ciencias Básicas, vol. 3, núm. 2, julio, pp. 19-25. ISSN 0120 - 4211. Universidad de
Pamplona, Colombia. Disponible en: http://www.redalyc.org/articulo.oa?id=90330203

[29] Linfei, C., & Daomu, Z. (2005). Optical Image Encryption Based On Fractional Wavelet Transform, Opt.
Comm. Vol. 254 (2005) p.p. 361-367.

[30] Hossam, E.A., Hamdy, K., & Osama, S.F.A. (2007). An Efficient CHAOS-BASED FEEDBACK STREAM
CIPHER (ECBFSC) For Image Encryption And Decryption. Informática, volumen 3, pp. 121-129.

[31] Pisarchik, A.N., & Flores-Carmona, N.J. (2006). Computer Algorithms For Direct Encryption And Decryption
Of Digital Images For Secure Communication, Proceeding of the 6th WSEAS international conference on
applied computer science (Canary Islands, Spain), pp. 29-34.

[32] Pisarchik, A.N., & Zanin, M. (2008). Imagen Encryption Witch Chaotically Coupled Chaotic Maps. Elsevier
Physica, abril [en línea], D 237. Disponible en: www.elsevier.com/locate/physd.

[33] Rajan, B., & Saumitr, P.A. (2006). Novel Compression And Encryption Scheme Using Variable Model
Arithmetic Coding And Coupled Chaotic System. IEEE Transactions on circuits and system- I, abril, volumen
53 (número 4).

[34] Jiménez, M., Flores, O., & González, M.G. (2015). Sistema para codificar información implementando varias
órbitas caóticas. Ingeniería. Investigación y Tecnología, vol. XVI, núm. 3, julio-septiembre, pp. 335-343. ISSN

Intelética 2 (2024) 15

1405-7743 FI-UNAM / ISSN: 1405-7743. Universidad Nacional Autónoma de México. Distrito Federal,
México. Disponible en: http://www.redalyc.org/articulo.oa?id=40440683002

[35] Fulgueira, M., Hernández, O.A., & Henry, V. (2015). Paralelización Del Algoritmo Criptográfico GOST
Empleando El Paradigma De Memoria Compartida. Lámpsakos, núm. 14, pp. 18-24. Fundación Universitaria
Luis Amigó Medellín, Colombia. E-ISSN: 2145-4086; julio-diciembre. DOI:
http://dx.doi.org/10.21501/21454086.1633. Disponible en:
http://www.redalyc.org/articulo.oa?id=613965326004

[36] Barranco, F., & Galindo, C. (2022). Criptografía básica y algunas aplicaciones. Universidad Jaume I,
Departamento de Matemáticas, Castellón, España. URL:
https://repositori.uji.es/xmlui/bitstream/handle/10234/201359/TFM_2022_Barranco_Bl%C3%A1zquez_Franci
scoMiguel.pdf?sequence=1

[37] Gómez, S., Arias, J.D., & Agudelo, D. (2012). Cripto-Análisis Sobre Métodos Clásicos De Cifrado.Scientia Et
Technica, vol. XVII, núm. 50, abril, pp. 97-102. Universidad Tecnológica de Pereira Pereira, Colombia. ISSN
0122-1701 97. Disponible en: http://www.redalyc.org/articulo.oa?id=84923878015. URL:
https://www.redalyc.org/articulo.oa?id=84923878015

[38] William, S. (1999). Cryptography and Network Security: Principles and Practice, 2nd edition, Prentice-Hall,
Inc., pp 23-50.

[39] Progress Software Corporation, Telerik (2020-2022). Cifrado Y Transferencia De Archivos: Los Mejores
Cifrados Seguros Para La Transferencia De Archivos. Ipswitch Blogs. Recuperado de:
https://ipswitch.com/amp/es/los-mejores-cifrados-seguros-para-la-transferencia-de-archivos/

[40] Luciano, D., & Prichett, G. (1987). Cryptology: From Caesar Ciphers To Public-key Cryptosystems. The
College Mathematics Journal, vol 18 pp 2-17.

[41] Barandela, R., Sánchez, JS., García, V., & Rangel, E. (2003). Strategies for Learning in Class Imbalance
Problems. Pattern Recognition, Vol. 36, No. 3 , pp. 849-851, 2003. Rapid and Brief Comunication (Pergamon)
ISBN: (PII: S0031-3203(02)00257-1. 0031-3203/02/).

[42] Barandela, R., Sánchez, J.S., García, V., & Rangel, E. (2001b). Fusion of techniques for handling the
imbalanced training sample problem. In: Procedings of 6th Ibero-American Symposium on Pattern Recognition,
Brasil, 2001, 31-40.

[43] Hart, P.E. (1968). The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory, 6,4,515-
516, Vol. IT-14, No. 3, May.

[44] Van, H.C., & Jajodia, S. (2011). Encyclopedia Of Cryptography And Security. Springer Science & Business
Media, 2011. 1416p. ISBN: 978-14419-5907-2.

[45] Van-Tilborg, H.C.A. (2005). Encyclopedia Of Cryptography And Security. Springer, pp 114-115, 201-202.
TUE Research portal. https://doi.org/10.1007/0-387-23483-7, (09/11/2024).

[46] PyPI (2024). "Pycryptodome 3.21.0". Python Software Foundation. Retrieved from:
https://pypi.org/project/pycryptodome/, (13/12/2024).

