Intelética 1(2) (2024), 1-15

Revista de Inteligencia Artificial, Etica y Sociedad

o
o INTELETICA
%
J
_\D—" https://inteletica.iberamia.org/

La regla del vecino mas cercano como alternativa para inyectar
ruido a mensajes encriptados por el algoritmo: Noised Random
Hexadecimal

Edgar Rangel-Lugo !, Kevin Uriel Rangel-Rios !

[1] Tecnoldégico Nacional de México. Instituto Tecnoldgico de Ciudad Altamirano.
[2] Tecnolégico Nacional de México. Instituto Tecnoldgico de Ciudad Altamirano.

[1] erangel_lugo@hotmail.com
[2] kgvppro@gmail.com

Abstract The theft of digital data problem is receiving growing attention. This situation can arise if at least one of
the cybersecurity strategies are not updated periodically (e.g., the employment of inadequate or static encryption
methods). It has been observed in several practical domains that may produce an important losses in the
organisation's finances. In the present paper, several aspects related with the subject are studied and experimental
results are here shown. We recommend the replacement of static encryption method by another dynamic alternative.
Moreover, simultaneously was employing a noisy injection to the ciphertext previously created by the static
strategies instanced in the organisations. The advantage of a dynamic encryption methods is creating a different
ciphertext result after of each execution, with the same plain text input. Novel proposal based on nearest neighbor
(1-NN) for ciphering of the information dynamically with noisy injection in hexadecimal format and comparison
results with traditional strategies (AES, RSA, 3DES, RC4 and DES) are also introduced.

Resumen El problema de robo digital de datos estd recibiendo gran atencion. Esta situacién puede presentarse
cuando una de las estrategias de ciberseguridad no es actualizada periédicamente (por ejemplo, el uso de algoritmos
de cifrado obsoletos o estéticos). Ello se ha observado en varios dominios practicos, que puede producir importantes
pérdidas en las finanzas de las organizaciones. En el presente articulo, son estudiados varios aspectos relacionados
con dicha 4rea. Ademas, se muestran resultados experimentales que nos permiten recomendar una alternativa para
reemplazar el método de encriptado de datos estdtico, por una variante dindmica que puede inyectar ruido a mensajes
cifrados por el algoritmo obsoleto o estatico que actualmente se utiliza en las organizaciones. Un método de cifrado
dindmico, permite generar diferentes resultados, en cada ejecucién, para una misma secuencia de entrada de texto
plano. Por tltimo, en este trabajo se introduce una nueva propuesta sobre el uso de la regla del vecino mas cercano
(1-NN) para el cifrado de datos dindmico con inyeccidn de ruido en formato hexadecimal y se comparan resultados
con cinco algoritmos estdndar (AES, RSA, 3DES, RC4 y DES).

Palabras clave: Metodologia Random Caesar, criptografia, la regla del vecino més cercano, formato hexadecimal.
Keywords: Random Caesar methodology, cryptography, nearest neighbor rule, hexadecimal numbers.

1 Introduccion

El problema de robo de datos digitales, en las organizaciones esta recibiendo gran atencién. En la prictica se han
observado grandes pérdidas econdmicas cuando se presenta una situaciéon de dicha indole, particularmente en
instituciones que no cuentan con alglin mecanismo de seguridad implementado. Una alternativa muy popular para

ISSN: 3020-7444
© Los Autores. Open Access, bajo Licencia Creative Commons (CC BY-NC).

2 Intelética 2 (2024)

ayudar a ese problema, es conocida como cifrado de datos, cuyo estudio corresponde a una de las drea de las ciencias
computacionales, dentro del campo de la seguridad informdtica, ya que, existe una drea conocida como
ciberseguridad [1]-[5] que en su nueva modalidad de actualizacion, recibe el nombre de ciber-resiliencia. En dichas
dreas, ha preocupado el aspecto de mantener a salvo la informacién de las organizaciones, asi como de usuarios
particulares, que manejan grandes volimenes de datos. En dichos campos de estudio se encuentra ubicada la
criptograffa, que proporciona herramientas necesarias para el cifrado de datos. La criptografia ha sido usada casi
simultdineamente desde el desarrollo avanzado del lenguaje escrito [6] y tradicionalmente jugd un rol fundamental
en la protecciéon de las comunicaciones oficiales de los Estados, de los gobernantes y, principalmente, de las
instituciones militares [7]. El uso de criptografia, cifrado y descifrado de texto, fue iniciado alrededor de 1900 B.C.;
cuando los Egipcios comenzaron a aplicar procedimientos de correspondencia [4],[8]. Se entiende por cifrado de
datos, la ocultacién de la informacién, mediante la traduccién de un mensaje original convirtiéndolo en un tipo de
lenguaje o cédigo, utilizando un alfabeto para cifrado/descifrado, que solamente podrd ser capaz de entender el
software especializado o persona autorizada. En actualidad, existen procesos donde se usa la Inteligencia Artificial
(IA) para conseguirlo. Uno de los propésito de la IA es hacer que "la mdquina piense" [9]-[13]. Para lograr este
proposito, la TA se apoya en diversas estrategias, técnicas, arquitecturas, modelos y paradigmas; algunos de ellos,
basados en métodos estadisticos [14], métodos heuristicos, por ejemplo: los drboles de decision [15] o grafos [16];
los métodos aleatorios [18]-[19], entre otros modelos. Un trabajo reciente, que utiliza A, mediante métodos
supervisados, para el encriptado de datos [20], sugiere el uso de un algoritmo genético [4], [17]-[18] para lograr el
cifrado de datos con ruido, usando un formato denominado: Pseudo-Hexadecimal [20]. Un método supervisado
[9].[21], es aquel que aprende a partir de una muestra de entrenamiento (ME). Todo método supervisado consta de
dos etapas: El aprendizaje y la produccién [9]-[13], [21]. Existen una gran variedad de métodos supervisados, por
ejemplo: arboles de decisién basados en el algoritmo C4.5 [15], la Regla NN (por sus siglas en inglés: Nearest
Neighbor), mejor conocida como: 1-NN o regla del vecino mds cercano [22], las redes neuronales supervisadas [23]
entre otros. En la etapa de aprendizaje, casi todos los métodos (excepto la regla NN), entrenan el modelo usando la
muestra de entrenamiento (ME). Después, se desecha y se procede a trabajar con clasificacion [9]. Entonces, las
redes neuronales, utiliza su modelo matematico para modificar los valores de sus enlaces, llamados "pesos" durante
el aprendizaje, y en la produccidn, usa los pesos o modelo matemdtico para clasificar y permitir la toma de
decisiones. Empero, la regla del vecino mds cercano, no es obligatoria la etapa de aprendizaje [15], [24], que consiste
en la creacién y/o preprocesamiento de la muestra de entrenamiento; para editar, reducir, descontaminar, por
mencionar algunas metodologias; y la etapa de produccidn, se usa la muestra de entrenamiento para la clasificacién
de patrones.

Por otra parte, existen otros trabajos relacionados con criptografia donde se utiliza la regla 1-NN y/o algoritmos
genéticos (GAs). Por ejemplo, se han aplicado con éxito en la optimizacién y planificacién de rutas de transporte
de redes de energia y deteccién de fraudes en el sector financiero, robética, disefio de circuitos electrénicos,
aprendizaje automdtico [5]; asi como, en criptografia con IA para comercio electrénico [4], en lo relacionado con
ataques sobre la transposicién y permutacion de cifrado [1], en algunos casos, aplicado a mono-alfabetos. Adem4s,
existen otras alternativas [25] que proponen el uso de un algoritmo criptografico simétrico aplicando GAs, Entropfa
y Aritmética Modular, mostrando comparacién de resultados con: DES: Data Encryption Standard, RSA:Rivest,
Shamir and Adleman y AES: Advanced Encryption Standard [25]. Del mismo modo, podemos encontrar en la
literatura, informacién acerca de otros tipos de métodos para cifrado de datos [26], basados en encriptacién Sptica
de informacién que usa mascaras aleatorios de fase; mientras que en otras propuestas [27]-[28] se utiliza una
criptografia digital basada en tecnologia dptica. Algunos trabajos en este sentido, que usan llaves dpticas aleatorias
de fase en el plano de entrada y en el plano de Fourier, son los reportados en dichas investigaciones [26]-[27],
incluyendo una que recientemente presentd un método que usa la transformada wavelet [29]; aunque muchos
métodos o esquemas de comunicacion segura se han desarrollado también, para cifrar informacién basandose en
sistemas discretos cadticos [30]-[33]. Por otra parte, existe otro trabajo [2] que muestra una visién de algoritmos
simétricos y asimétricos; aplicando ambas técnicas mediante el uso de RSA y 3DES, implementados en Visual
Basic. NET. También, existen los algoritmos de cifrado simétrico, discreto cadtico [34], de mapa logistico. Este
algoritmo se aplic6 para codificar una imagen. Otro algoritmo criptogrifico, que presenta un proceso de
paralelizacidn, es el algoritmo criptogrdfico GOST [35], utilizado para reduccién del tiempo de ejecucién de un
algoritmo criptogréfico; mientras que en otras investigaciones se exponen algunos aspectos juridicos del cifrado de
comunicaciones [7].

En lo relacionado con los algoritmos de cifrado; en el pasado, Julio César (Julius Caesar)[36]-[37], también disefié
métodos seguros para transmitir en secreto informacién para gente importante en el campo de la milicia [4],[38].

Intelética 2 (2024) 3

De acuerdo con lo anterior, otros autores [36] presentan varios tipos de algoritmos de cifrado: por desplazamiento,
por sustitucion, por permutacion, cifrados de flujo, de claves privadas (como: DES, AES), de clave publica (como:
RSA), basados en funciones Hash (como: MD5, SHA1 y derivados), por mencionar algunos. Sin embargo, uno de
los algoritmos mds populares en sus inicios, por ser sencillo de implementar [20], fue el algoritmo de desplazamiento
o sustitucion, conocido como: Algoritmo Caesar o Cifrado del César [36]-[37]; el cual, tiene algunas variantes o
derivados, que han desarrollado distintos investigadores, donde se muestran algunas técnicas de encriptacién
clasicas, tal como los cifrados del Cesar y Vigenere [37]; realizando un cripto-andlisis sobre métodos cldsicos de
cifrado. Sin embargo, al observar en la literatura, podemos darnos cuenta que, los cifrados basados en Caesar, ya
no son muy utilizados frecuentemente; destacando otras series populares como: MD5, SHA1 y derivados basados
en tablas Hash, principalmente para tareas de autenticacion o integridad de datos; entre otros algoritmos populares,
empleados para el cifrado y descrifrado de informacién, como son el caso de: AES, DES, RSA, por mencionar
algunos [39].

Empero, aunque existe gran variedad de algoritmos de cifrado [19], [36]; en la préctica, los usuarios de Internet,
siguen estando vulnerables a ataques por parte de los ciberdelincuentes [20], ya que, algunos lenguajes de
programacion soportan librerfas para cifrado/descifrado de datos, lo cual, les permite a estos ciberdelincuentes
obtener informacién de manera rdpida y facil. Por tal razén, es importante que nos preocupemos por proteger los
datos usando nuevos algoritmos o métodos, incluyendo el uso de cifrado de la informacién, sobretodo utilizar
metodologias que no conozcan o soporten las herramientas libres o comerciales o "ilegales", que existen para el
descifrado de datos. Es por ello, que este trabajo de investigacion, se considera importante realizar la exploracién
del problema de inseguridad de datos, presentando algunas alternativas para el cifrado de informacién, que permita
confundir y/o retrasar, a estos ciberdelincuentes, en el momento de querer descifrar nuestra informacién, y por ende,
pueda mejorar la seguridad de datos en las organizaciones. Esta es precisamente, una de las hip6tesis que guia este
trabajo, que ;A través de la inyeccién de ruido en un mensaje cifrado, puede incrementarse el grado de seguridad,
por ejemplo, en una cadena de texto cifrada?. Una aproximacion para resolver dicho problema, la podemos encontrar
en otras investigaciones [2], [20], [29]-[33],[39].

En lo que concierne con la presente investigacion, se propone el uso de inyeccién de ruido, en formato hexadecimal,
introduciendo el nuevo concepto del uso de la regla del vecino mds cercano [13],[22], para inyectar ruido en
mensajes cifrados, todo con el propdsito de generar un paquete encriptado de mayor dificultad para ser descifrado.
Se comparan cuatro algoritmos, basados en el Cifrado del Caesar Aleatorio (Random Caesar [20]) con dos variantes
del clasico Cifrado del César. Los métodos de cifrado estudiados son: Cifrado Del César por desplazamiento y por
sustitucién [36]-[37]; asi como, las nuevas variantes propuestas: Hexadecimal Caesar, Hexadecimal Random
Caesar, Noised Random Hexadecimal, y por su puesto, Noised Random 1-NN Hexadecimal. Adicionalmente, con
el propdsito de validar las técnicas en entornos reales con datos diversos y poder comparar su efectividad respecto
a otros métodos mds tradicionales, se incluyen resultados de experimentos utilizando los algoritmos: AES
(Advanced Encryption Standard [25], [36], [39]), RSA (Rivest-Shamir-Adleman [2],[25],[36],[39]), 3DES (Triple
Data Encryption Standard [2]), RC (Rivest Cipher [2]) y DES (Data Encryption Standard [2],[25],[36],[39]).

2 Metodologia

El tipo de investigacion desarrollada en el presente trabajo, se considera experimental y exploratoria, teniendo en
cuenta que el algoritmo del César y variantes [36]-[37], [20], combinado con el uso de la regla 1-NN [22], [9]-[13],
en el cifrado de datos, ha sido poco estudiado [20] o no se habia utilizado antes del desarrollo del presente proyecto,
o al menos no con el mismo enfoque o propdsito que aqui se presenta. Los datos utilizados son del tipo niimero
entero, hexadecimales y cadenas de caracteres (para su procesamiento, en algunos casos se utilizaron estructuras de
vectores, en su formato de arreglos computacionales). Se trata de mensajes de texto que fueron convertidos en
vectores (de caracteres ASCII, o su correspondiente ordinal entero y/o hexadecimal, segin sea el caso). La
recoleccién de datos fue llevada a cabo en forma heuristica y de manera aleatoria. Primero, se disefiaron cadenas de
texto a cifrar, usando una estructura de arbol, para distinguir texto en dos idiomas: espaifiol e inglés; incluyendo (en
las secuencias de texto) algunos caracteres fuera del rango imprimible del c6digo ASCII. Posteriormente, con esa
informacion, se ha creado una muestra de entrenamiento (ME), que es una matriz generada en forma aleatoria con
reemplazo, donde cada fila o patrén de entrenamiento, contiene el texto cifrado, cuya etiqueta de clase corresponde
al mismo mensaje de texto original (el disefiado antes de ser cifrado). El tamafio mdximo utilizado en las cadenas
de texto a cifrar (columnas en la ME) fue de 255 caracteres (y por ende, las posiciones de los vectores de

4 Intelética 2 (2024)

procesamiento, también es de 255 como méiximo; aclarando que cada posicién del vector puede contener un valor
ASCII de un solo caracter; o si es de tipo entero puede almacenar un valor entre 0 a 255. Del mismo modo, los
vectores hexadecimales almacenan un valor de cuatro cifras, su correspondiente hexadecimal ASCII; es decir, la
secuencia FF se almacena como O0FF). Cabe mencionar, que a cada método de cifrado utilizado, se disefié su propia
ME vy fueron evaluados cada uno de manera separada. El procedimiento empleado para medir el acierto o llevar a
cabo la estimacién del error, a cada una de las muestras, se le aplicé validacién cruzada con cinco repeticiones (el
20% empleado como muestra de control y un 80% para evaluar el modelo, se usa como muestra de entrenamiento).
Ademas de las muestras de entrenamiento, se utilizaron otros materiales durante el proceso de desarrollo y
experimentacién. Se trata de dos equipos de cOdmputo con sistema operativo Windows 10, velocidad de
procesamiento (CPU) de 2 GHz, capacidad de 8 GB en memoria RAM y un disco duro de 500 GB. Se instal6
lenguaje Java (Oracle JDK versién 21), y también, lenguaje Python 3, para la implementacién del software que
realiza las operaciones de cifrado/descifrado de datos; el uso de dos lenguajes de programacion, fue considerado
para llevar a cabo comparaciones de los resultados (textos cifrados), asi como, de los tiempos de ejecucion, y poder
verificar el grado de confiabilidad de los métodos de cifrado, que se describen mds adelante. Al final, se hizo una
prueba comparativa entre los resultados y/o cédigo fuente generados, y no se observé diferencia significativa. Los
algoritmos implementados en Python, funcionaron en las mismas condiciones y con comportamientos equivalentes
respecto a los codificados en Java. Solamente se observd, que era mejor iniciar la implementacién primero en Java,
y después migrar el c6digo a Python; para evitar demoras con el grupo de programadores, ya que, se detectaron
partes de c6digo escrito en Java, que no podian traducirse a Python del mismo modo, tal es el caso de: abstraccion,
uso de interfaces (implements), sobrecarga de métodos, polimorfismo, uso de ciclos "do-while", entre otras
operaciones; que al ser migradas de Java a Python, en algunos casos, se tenfa que codificar distinto, y por ende, se
tuvo que regresar a convertir en Java su equivalencia, y ello demoraba el proceso de implementacién. Los métodos
empleados (e implementados en lenguajes de programacién: Java y Python 3) son los que se describen enseguida.

El primer método de cifrado, utilizado en la presente investigacion, es el cldsico Cifrado del César, conocido también
como Cifrado Caesar. Este algoritmo, es considerado de facil implementacién, que fue utilizado por El César, para
comunicarse con sus generales [37]. Se trata de un tipo de cifrado por sustitucién, donde un simbolo de texto plano
(a cifrar) es sustituido por otro simbolo que se encuentra K posiciones siguientes en el mismo alfabeto. Por ejemplo,
suponiendo que el valor de K=1 y el alfabeto es el abecedario del espafiol y el texto plano es: "holaquetal”, se
procede a reemplezar cada letra del texto plano, por la siguiente del alfabeto (puesto que k=1), teniendo como
resultado, que la letra "h" se sustituye por "i", la letra "0" se reemplaza por "p", y asi sucesivamente, hasta agotar
las letras que contiene el texto plano, obteniendo la secuencia cifrada o encriptada: "ipmbrvfubm" [36]-[37]. Una
definicién formal para lograr el cifrado con este método es la siguiente: C[i] = S[i] + K (mod N) ; y el descifrado se
utiliza: D[i] = C[i] - K (mod N). Donde: S[i] es el caracter (en posicién i) del texto plano; C[i] es el caracter i del
texto cifrado; D[i] es el caricter i del texto descifrado; el pardmetro K es el nimero de posiciones siguientes para
poder calcular la operacién de sustitucion; mientras que N corresponde a la cantidad de simbolos del alfabeto; que
se refiere al mddulo 26, es decir, el nimero de letras en alfabeto [36]; por ejemplo, iniciando desde la letra "A" 'y
terminando hasta la letra "Z", son 26 caracteres, si se eliminan del alfabeto espafiol las siguientes letras: N, CH, RR
y LL. Por lo tanto, si se utiliza este método con el valor K=3, se conoce como Cifrado del César, debido a su uso
reportado por Julio César [36]. El problema que tiene este algoritmo, es que hace vulnerable la seguridad de los
datos; ya que, un mismo simbolo del texto plano, se puede cifrar al mismo simbolo del texto cifrado. Por lo tanto,
si un criptoanalista conoce que para una secuencia cifrada se utilizé este método, podria localizar la letra que mas
se repite en el texto cifrado, por ejemplo, si se observara que la letra "e" del alfabeto se repite mds, podria realizar
la resta entre esas dos letras y hallar facilmente el valor K para la sustitucién [20], [37], [40]. Sin embargo, si
observamos en la literatura [36]-[37], podemos apreciar que existen varios métodos de cifrado, por ejemplo: por
desplazamiento y por sustitucion, entre otros. El clasico Cifrado del César, algunos autores [37] lo describen como
un tipo de cifrado por sustitucién; mientras que en otras investigaciones [36] se describe como un algoritmo por
desplazamiento. En la presente investigacion, al cldsico Cifrado del Caesar, se presenta como algoritmo de
desplazamiento, ya que, de esa manera ha sido su implementacién (en Java y Python 3). En esas referencias [36]-
[37], no se describe el uso de caracteres fuera del alfabeto del médulo 26 (mod 26); por ejemplo: nimeros y otros
simbolos de la tabla ASCII, son omitidos. Tampoco, se menciona si se debe distinguir o no, el uso de mintsculas o
mayusculas. Por lo tanto, para poder comparar resultados con las fuentes citadas, también se hizo la implementacién
"por sustitucién”, que se refiere en este articulo como: Cifrado Del César por sustitucidn, que fue el segundo método
de cifrado utilizado, aclarando que se aplicaron modificaciones en la implementacién, para que "realmente" se
trabajara "por sustitucién", algo parecido a las ecuaciones que presenta el "Criptosistema 3" [36]. Por lo tanto, en la

Intelética 2 (2024) 5

presente investigacion, la implementacion del Cifrado del Caesar por sustitucion, para obtener la secuencia cifrada,
se puede definir formalmente como: C[i] = Z[i] (mod 26). Donde: Z[i] se obtiene como: Z[i]=D[t], solamente si:
S[i]=A[t] (distinguiendo en el alfabeto A[t] las maytsculas y mindsculas); en otro caso se asigna: Z[i]=S[i] (es decir,
conserva el caracter original de la ocurrencia actual en S[i]). Cabe aclarar que el alfabeto A[t] tiene una extension
de "mod 26", pero ahora se distinguen las mayusculas y mintisculas. La variable i avanza en funcién del tamafio de
la secuencia S[i] (del texto plano); mientras que la variable t avanza en funcién del alfabeto A[t] o D[t], que en este
caso su valor mayor es 26, por usar un médulo N=26. El procedimiento se realiza por sustitucién del caracter
localizado en alfabeto A[t] siendo reemplazado por el caracter del segundo alfabeto D[t] que estd ubicado en la
misma posicién de A[t], para finalmente ser guardado en Z[i]. Es por ello, que en esta variante "por sustitucién",
permite la incorporacién de caracteres que no estén dentro del rango de mod 26 (copiando el mismo caracter S[i]
dentro de la secuencia de texto cifrado C[i]). Otra aclaracién al respecto, es el uso de D[t], que se trata de un segundo
alfabeto para realizar el cifrado/descifrado de datos, el cual, consiste en un alfabeto con desplazamiento de K, cuyo
valor debe ser menor o igual que 26. Para obtener este segundo alfabeto se realiza la operacion: D[t]=A[t+K]; si el
valor de (t+K) es mayor que mod 26, se regresa a la posicién inicial de A[t], y desde ahi, continda trabajando como
si se tratara de una estructura de cola circular. En esta investigacién, un valor de K mayor que 26, se ajusta como
K=26, lo que permite darnos cuenta de algiin error en el cifrado de datos, debido a que, el resultado de C[i]
corresponde a la misma informacién guardada en S[i], esto es, en caso de ocurrir error al localizar un caracter dentro
del alfabeto A[t] o D[t], segtin sea el caso. Por tltimo, para obtener el descifrado, se puede definir como: R[i]=Z][i]
(mod 26); es decir, solo se intercambian los alfabetos: A[t] por D[t], sustituyendo S[i] por C[i], despejando del
siguiente modo: S[i]=C[i]; Q[t]=A[t]; A[t]=DI[t]; D[t]=QI[t]; posteriormente, se procede realizando las mismas
operaciones del proceso de cifrado, obteniendo en R[i], el texto descrifrado.

El tercer método de cifrado utilizado en esta investigacidn, referido como: Hexadecimal Caesar (Cifrado Caesar
Hexadecimal), cuyo procedimiento, es un derivado del Cifrado del César, implementado con la variante "por
desplazamiento". En este aspecto, existe una diferencia, ya que, ahora se omite el uso del alfabeto, y en su lugar, se
procede sumando el valor K (de desplazamiento) utilizando directamente los valores de la tabla ASCII del texto
plano S[i], pero operando con el nimero correspondiente en hexadecimal. El resultado serd una cadena concatenada
de nimeros en formato hexadecimal. Para obtener el cifrado usando Hexadecimal Caesar, se puede definir
formalmente como: C[i]=(String) Hex((Ord(S[i]) + K) , Num) (mod 95); y para obtener el descifrado se puede
utilizar: D[i]J=Hex((Ord(C[i]) - K , Num) (mod 95). Donde: S[i] es el texto plano a cifrar; C[i] contiene los datos
cifrados; D[i] contiene los datos descifrados; mientras que Num se refiere a las cifras hexadecimales a emplear (por
ejemplo, para Num=2 y ASCII=255 indica el hexadecimal FF, si Num=4 el hexadecimal seria: 00OFF). El valor de
K indica el desplazamiento que debe ser menor o igual a 129 (de lo contrario, se ajusta como: K=129). El médulo
95 o mod 95, significa la extensién del alfabeto, pero no en términos de utilizar un vector para realizar
desplazamiento (porque se omite), sino que, ahora se refiere a los caracteres ASCII validos a considerar (se usan 95
caracteres de la tabla ASCII, del 32 al 126, que inicia con el espacio y termina con la tilde). Suponiendo que el
mayor valor ordinal de S[i] fuera 126, al ser sumado con el mdximo valor de K=129; tenemos que: 126+129=255,
es decir, no excede el valor 255 de la tabla ASCII. Los valores en S[i] fuera del rango del mod 95, no representan
problema, ya que, en ninglin momento se realiza una conversién ASCII de un valor hexadecimal que ha sido
aplicado previamente algiin desplazamiento de K, solo que en este tltimo caso, se recomienda trabajar conversiones
de hexadecimales con Num=4. Por iltimo, el uso de las funciones o "cast": Ord, Hex y String ; permiten convertir
valores ASCII a ordinales, enteros a hexadecimales; y , de hexadecimales a cadena de caracteres; respectivamente.
En esta investigacion, se ha utilizado cuatro cifras para operaciones en hexadecimal, para permitir el uso de
caracteres extendidos de la tabla ASCII, que al ser convertidos a ordinal, el lenguaje de programacién puede regresar
un entero fuera del mod 255 del ASCII (por ejemplo, el ASCII=178 es un caracter extendido imprimible como ' @
'; pero al ser convertido en hexadecimal, se observé en plataforma Windows, que no se traduce como: ASCII=178,
sino que regresa un nimero muy grande, por ejemplo: 9714, cuyo valor hexadecimal rebasa las dos cifras: 25F2).

El cuarto método de cifrado utilizado en esta investigacion, es denominado Hexadecimal Random Caesar (Cifrado
Caesar Aleatorio Hexadecimal), el cual, fue inspirado en una de las versiones de Random Caesar (Cifrado del César
Aleatorio), que han sido presentadas en otras investigaciones [20], debido a que, dichas propuestas resultaban muy
prometedoras en el aspecto de incrementar la seguridad de los mensajes cifrados, presentando una nueva aportacién
al clasico Cifrado del César (por desplazamiento), a través de métodos aleatorios aplicados sobre el desplazamiento
K, denominado ahora K[i], por la razén de que, en esta nueva modificacién son varios desplazamientos que se
realizan, cada uno de ellos (aleatorio con reemplazo) por caracter incluido en el texto plano S[i]; ademds de contar
con una segunda fase en el procedimiento, que consiste en crear un empaquetado con inyeccién de ruido ordinal o
tipo ASCII, existen al menos tres versiones, que difieren en la extensién del médulo N (comtinmente, N=255 versién

6 Intelética 2 (2024)

estdndar, N=95 segunda versién con rango ASCII de 32 hasta 126; y , N=120, la version II extendida con rango
ASCII de 30 a 150, para inyectar ruido). Esta modificacién, se considera que puede ayudar un poco a impedir que
un "cyber-delincuente”, logre descifrar ficilmente el texto C[i], ya que, para conseguirlo tendria pricticamente que
“adivinar” cudl valor de desplazamiento se ha utilizado en cada caracter incluido en C[i], o de lo contrario, tendria
(el cyber-delincuente) que llevar a cabo severas pruebas (exhaustivas) para conseguir el descifrado de datos [20].
Sin embargo, en Hexadecimal Random Caesar, no se adopta la incorporacién de ruido en el empaquetado cifrado,
solo se incluyen los componentes: C[i] y K[i] (seleccionado aleatorio con reemplazo, para aplicar desplazamientos
sobre S[i] y generar C[i]), pero en esta nueva aportacion, en lugar de realizar empaquetados del tipo ordinal/entero
o caracter (ASCII), ahora se trabaja con su correspondiente nimero hexadecimal, empleando cuatro cifras, para
permitir el cifrado de caracteres fuera del rango mod 255. El proceso de cifrado para Hexadecimal Random Caesar
se puede definir formalmente como: PAQ_HRC = ((String) E) (mod 120) ; y para obtener el descifrado: D[i] = (
(char)(PAQ[x] - PAQ[x+1])) (mod 120). Donde: E = EmpaquetadoFinal = (Hex2 ((int) C[i]) + Hex2 (K[i])) ;
teniendo en cuenta que, en este caso, el signo "+" refiere a la funcién concatenar y que se trata de un par de valores
en hexadecimal de cuatro cifras. La secuencia C[i] corresponde a la operaciéon: C[i] = S[i] + K[i] (mod 120) ;
mientras que S[i] es el texto plano y KJi] es el vector (aleatorio con reemplazo) que contiene los desplazamientos,
uno para cada S[i] y cada valor K[i] debe ser menor que 105 (para no exceder el ASCII=255, ya que, en mod 120,
el maximo valor es ASCII=150, por lo tanto, la operacién: 105+150=255). Las funciones o "cast" String, int, char
y Hex2 ; permiten convetir de hexadecimal a cadena de caracteres, de caracter ASCII a entero, de entero a caracter
y entero a hexadecimal (de cuatro cifras), respectivamente. PAQ_HRC es un vector que guarda pares hexadecimales
(de cuatro cifras) y contiene el paquete cifrado (incluye cada C[i] con su respectivo K[i]). El vector PAQ es generado
por la asignacién: PAQ = ((int) (SPLIT (PAQ_HRC, 4)). La funcién SPLIT divide a PAQ_HRC, convirtiéndola
a vector de pares, en formato hexadecimal de cuatro cifras; mientras que PAQ[x] corresponde al valor de caracter
cifrado C[i] y PAQ[x+1] es el correspondiente desplazamiento (K[i]).

El quinto método de cifrado utilizado y referido en esta investigaciéon como: Noised Random Hexadecimal (Cifrado
Aleatorio Con Ruido Hexadecimal), esta basado su procedimiento en la fusiéon de sus predecesores: Hexadecimal
Random Caesar y Cifrado del Caesar por sustitucion. Lo anterior significa, que se utiliza el paradigma basado en
alfabetos, pero ahora, con formato hexadecimal. A diferencia de Random Caesar [20], el cifrado Hexadecimal
Random Caesar no incluye la incorporacién de "ruido intencional" en el empaquetado, solamente son concatenados
(por pares hexadecimales de cuatro cifras) los valores correspondientes a la secuencia de caracteres cifrados C[i]
acompafiados cada uno de su respectivo desplazamiento K[i]. El inico "ruido" que podria llegar a agregarse, seria
de manera no intencional (aleatoria), por los caracteres no imprimibles que estuvieran fuera del rango mod 95, ya
que, debemos recordar que Hexadecimal Random Caesar, trabaja con médulo 120 (es decir, los caracteres no
deseables o con "ruido" serian en este caso, los que se encuentren dentro del rango: 30 a 32 y 127 a 150). En lo que
concierne con Noised Random Hexadecimal, también trabaja con mod 120 y mediante el uso de nimeros
hexadecimales de cuatro cifras, pero debido a que, es un algoritmo de sustitucién, ya no se emplea el vector de
desplazamientos K[i], sino que, en su lugar, se definen dos alfabetos, uno para realizar el cifrado y otro para el
descifrado. No debemos confundir el método Hexadecimal Random Caesar con la propuesta Noised Random
Hexadecimal, ya que, difieren en el tamafio del empaquetado de cifrado, asi como, en el proceso de encriptado y
desencripcion de datos. Podemos definir formalmente el proceso de cifrado con Noised Random Hexadecimal del
siguiente modo: EMPAQUETADO = (String) (Hex2 (Alfabetol[i]) + Hex2 (Alfabeto2[i]) + Hex2 (
CifradoParcial[i])) (mod 120). Donde: El operador "+" refiere, en este caso, a la funcién concatenar de manera
intercalada, de acuerdo con el contador "i", el cual, puede tener un valor maximo de 120, en caso de que la longitud
del texto plano sea menor o igual que la longitud del Alfabetol[i], de lo contrario, se actualiza "i" con el valor
correspondiente a la longitud del texto plano a cifrar, que en esta investigacion se utiliza como pardametro k (que no
corresponde a desplazamientos). Los vectores: Alfabetol[i] y Alfabeto2[i] contienen caracteres ASCII dentro del
rango correspondiente a mod 120 (y por ende, su inicial longitud maxima es de 120 localidades, excepto si longitud
de texto plano es mayor). El contenido de cada vector es seleccionado de manera aleatoria sin reemplazo (no se
realizan comparaciones sobre el grado de similitud de los alfabetos, ya que, se entiende que en la prictica, es muy
dificil que ambos alfabetos contengan la informacién en el mismo orden, salvo casos de excepcion). Las funciones
o "cast": Hex2 y String, permiten convertir un vector de ordinales o caracteres ASCII a formato hexadecimal de
cuatro cifras; y, convierte un vector a cadena de caracteres, respectivamente. Por ultimo, CifradoParcial[i] =
Alfabeto2[i] , siy solo si, el texto plano S[k] se encuentra en Alfabetol1[i], de lo contrario se asigna: CifradoParcialli]
= Hex2 (S[k]). Cuando S[k] es longitud menor que Alfabetol [i], este tltimo tiene longitud inicial de 120, por lo
tanto, se tendrd que rellenar con "ruido" las localidades de CifradoParcial[i] (se trata de nimeros aleatorios,

Intelética 2 (2024) 7

seleccionados con reemplazo, con formato hexadecimal); debe rellenarse, iniciando desde posicidn k hasta llegar al
valor de "i". Si la longitud de S[k] es mayor que Alfabetol [i], en este caso, se tendrd que asignar i=k , insertando
nuevas localidades a los vectores: Alfabetol [i] y Alfabeto2[i] , para rellenar con "ruido" (hexadecimal,
aleatoriamente con reemplazo) estas nuevas localidades vacias. Por otra parte, para el descifrado de datos con
Noised Random Hexadecimal, se utiliza la informacién del EMPAQUETADO, separando los vectores (que estdn
intercalados) y buscando cada caracter del cifrado parcial en el Alfabeto2[i], regresando a su valor original
localizado en la misma posicién del Alfabetol[i], siendo convertido de nimero hexadecimal a su valor de caracter,
correspondiente en la tabla ASCII.

El sexto método de cifrado utilizado en esta investigacién, denominado como: Noised Random 1-NN Hexadecimal
(Cifrado Aleatorio Con Ruido 1-NN Hexadecimal), es considerado una nueva propuesta, debido a que no se reporta
en la literatura su aplicacién, o al menos no, con el mismo propésito que aqui se presenta. El cifrado Noised Random
1-NN Hexadecimal, es sucesor del método Noised Random Hexadecimal, y aunque el proceso para cifrado se lleva
a cabo de manera similar, ambos modelos, difieren en el tamafio del empaquetado cifrado, debido a que, Noised
Random 1-NN Hexadecimal, agrega un elemento adicional denominado Patrén[i], el cual, consiste en inyeccién de
"ruido" (hexadecimal), siendo incorporado dentro del mismo empaquetado. Para realizar el cifrado con Noised
Random I-NN Hexadecimal, puede definirse formalmente como: EmpaquetadolNNHex = (String) (Hex2 (
Alfabetol[i]) + Hex2 (Alfabeto2[i]) + Hex2 (CifradoParcial[i]) + Hex2 (Patrén [i])) (mod 120). Donde: El
Empaquetadol1 NNHex es el paquete cifrado en formato hexadecimal de cuatro cifras (dicha conversion se realiza
con la funcién o "cast": Hex2). Los primeros tres vectores del empaquetado (Alfabetol[i] , Alfabeto2[i] y
CifradoParcial[i]), son obtenidos de la misma forma que se lleva a cabo con Noised Random Hexadecimal; mientras
que el Patron[i] es el vecino mds cercano [13], [20], [22], [41]-[43] del CifradoParcial[i]. Suponiendo que
MEI[f][i+1] es una muestra de entrenamiento de (i + 1) columnas y f=100 filas (ya que "i" depende del tamafio de la
longitud del texto plano S[k]). La posicién (i + 1) refiere a la columna que guardard la informacién de etiqueta de
clase (por usar una seleccion aleatoria con reemplazo, se entiende habrd oportunidad de repetir su valor, teniendo
de este modo, una muestra de entrenamiento de varias clases). Cada fila es considerada como un patrén "ruidoso"
que contiene ordinales o caracteres ASCII (seleccionados aleatoriamente con reemplazo con mod 120). Al buscar
el vecino mas cercano de CifradoParcial[i] en ME[f][i+1] se obtendrd como resultado Patrén[i] (es decir,
aplicaremos la modalidad de eliminar su etiqueta para incorporar al empaquetado cifrado, ya que, la etiqueta solo
sirve "para simular" que existe una distribucidn por clase). Este Patron[i], es la secuencia de caracteres ordinales o
ASCII mas parecida al texto cifrado, y por ende, al ser incorporada (como "ruido") en el Empaquetadol NNHex
cifrado, se entiende, que ello puede confundir a un "ciber-delincuente" que quisiera descifrar el mensaje. Por ultimo,
para el descifrado de datos, se separa la secuencia del EmpaquetadolNNHex, buscando cada caracter del cifrado
parcial en el Alfabeto2[i], siendo sustituido por el correspondiente en Alfabetol1[i], convirtiéndose el hexadecimal
a valor caracter de la tabla ASCII.

Un 1ltimo método utilizado, no es para realizar cifrado de datos, sino para evaluar los tiempos de ejecucion y la
estimacion del error. El método utilizado se le conoce como: Método nt (PI) o Validacion Cruzada [9]-[13], [20],
que consiste en los siguientes pasos: (1) Se extrae de la muestra de entrenamiento, un grupo de patrones ME-Pi' de
tamaiio 'Pi'. (2) El MODELO se entrena con la muestra de entrenamiento (‘ME') sin incluir a ME-Pi'. (3) El modelo
se entrena y/o evalia con 'ME-Pi'. (4) El proceso se repite para: i = 1, 2, ..., (n/ p). Donde: 'ME-Pi' se le conoce
como muestra de control (‘MC'), que sirve como prueba o test (en esta investigacion, con la modalidad del encriptado
de datos, no se realiza operaciones sobre la muestra de entrenamiento con este conjunto de datos 'MC', solo se extrae
para poder realizar la estimacién de la velocidad de cada modelo de cifrado, usando sesgo optimista); mientras que
'Pi' es el porcentaje extraido de la muestra de entrenamiento (en los experimentos fue utilizado un valor de Pi'=20%).
El porcentaje para 'ME' utilizado fue del 80%. El modelo se refiere a cada método de cifrado de datos, siendo
evaluado de manera separada. El término "entrenar o evaluar el modelo", en esta investigacién, no se hace
empleando 'ME-Pi', sino que se refiere a aplicar descifrado de datos sobre cada fila de la 'ME' (solo al 80% sin los
patrones 'ME-Pi'), con el propdsito de medir los tiempos de cifrado/descifrado, asi como, observar si hubo algiin
error en el descifrado. Se entiende que 'p' es el porcentaje utilizado para 'ME-Pi', que va en funcién de n (tamafio de
la ME). En esta investigacion, el punto (4) se realiza repitiendo cinco veces la operacion, siendo extraido de 'ME"
un 20% de 'ME-P1i' distinto en cada repeticion.

Adicionalmente, con el propdsito de comparar resultados, y poder validar las técnicas aqui propuestas, y su
efectividad, respecto a otros métodos mds tradicionales, fueron realizados nuevos experimentos usando las mismas
muestras de datos, referidas previamente, haciendo uso de la validacion cruzada, descrita anticipadamente,
trabajando de manera separada, cada uno de los siguientes métodos o algoritmos de cifrado de datos: AES

8 Intelética 2 (2024)

(Advanced Encryption Standard [25], [36], [39]), RSA (Rivest-Shamir-Adleman [2],[25],[36],[39]), 3DES (Triple
Data Encryption Standard [2]), RC (Rivest Cipher [2]) y DES (Data Encryption Standard [2],[25],[36],[39]). La
version empleada de AES [2],[36] fue: AES-256 [44]-[45]. La variante utilizada para RC [2],[36] ha sido la
denominada como: RC4 (Rivest Cipher 4) [44]-[45], y con respecto a RSA [2],[25],[36],[39], se ha utilizado: RSA-
2048 [44]-[45].

3 Resultados y discusion

Los experimentos realizados con los métodos de cifrado, descritos previamente, fueron llevados a cabo utilizando
muestras de entrenamiento (ME) generadas de manera aleatoria con reemplazo, donde cada fila contiene el texto
cifrado, cuya etiqueta de clase corresponde al mismo mensaje de texto original (sin descifrar); tal como se ha descrito
previamente en la seccién de la metodologia. Cabe agregar, que el nimero maximo de filas en la ME fue de 1000
ejemplares y el tamafio maximo utilizado como columnas corresponde a la longitud de la cadenas de texto a cifrar,
sin rebasar el limite de 255 caracteres (excepto el algoritmo 3DES, que usa estrictamente una longitud igual a 24
bits), se agreg6 dos columnas adicionales: una para conocer el tiempo de cifrado (en milisegundos) y otra columna
para poder indicar posteriormente el error, y de esta forma, facilitar el cdlculo de los promedios. Del mismo modo,
cada cadena de texto a cifrar, puede ser almacenada como vector o texto plano (aunque en este caso, fue necesario
convertir a vector tipo ordinal o entero o caracteres tipo ASCII o hexadecimal de cuatro cifras, segin el método de
cifrado empleado). Cabe aclarar, que para cada método de cifrado utilizado, se disefié su propia ME y fueron
evaluados cada uno de ellos, de manera separada. El procedimiento empleado para medir la estimacién del error,
asf como, para estimar la velocidad promedio de cada método de cifrado de datos, fue la Validacién Cruzada [9]-
[13], [20], siendo aplicado de la forma en que se describe en la metodologia.

Durante el inicio de la experimentacién, fueron estudiados los métodos de cifrado que no cuentan con
desplazamiento K[i] aleatorio, los cuales, se aplicaron a la muestra de entrenamiento correspondiente, para cada
uno de ellos; tal es el caso del clasico Cifrado Caesar Por Desplazamiento De K, el tradicional Cifrado Del César
Por Sustitucién (usando médulo 26, en ambos casos) y Hexadecimal Caesar (usando médulo 129). Los valores de
desplazamiento K utilizados para la aplicacién de estos métodos sobre su muestra de entrenamiento particular
fueron: K=4, K=11, K=95, K=120 y K=255; lo anterior, para poder comparar resultados con otras investigaciones
[20], [36]-[37], esta informacién la podemos apreciar en Tabla 1. Posteriormente, se estudiaron y llevaron a cabo
los experimentos, con los métodos de cifrado, cuyo valor de desplazamiento K[i] es aleatorio con reemplazo, dichos
modelos son: Hexadecimal Random Caesar, Noised Random Hexadecimal y Noised Random 1-NN Hexadecimal,
todos ellos usando mddulo 120; dichos resultados se muestran en la Tabla 2. Los experimentos descritos
anteriormente, fueron realizados con el programa de computo escrito en lenguaje Java; y se repitieron utilizando el
programa de cémputo en lenguaje Python 3, observando que no hubo diferencia significativa en los resultados. En
su mayoria, los experimentos tuvieron €xito; sin embargo, se considera, que falta profundizar un poco mads,
extendiendo el uso de cadenas de texto plano con longitud mayor que 255 caracteres. Por dltimo, con el propdsito
de comparar resultados, y poder validar las técnicas aqui propuestas, y su efectividad, respecto a otros métodos
mds tradicionales, fueron realizados nuevos experimentos usando las mismas muestras de datos, referidas
previamente, haciendo uso de la validacion cruzada, descrita anticipadamente, trabajando de manera separada,
de los siguientes métodos o algoritmos de cifrado de datos: AES (Advanced Encryption Standard [25], [36], [39]),
RSA (Rivest-Shamir-Adleman [2],[25],[36],[39]), 3DES (Triple Data Encryption Standard [2]), RC (Rivest Cipher
[2]) y DES (Data Encryption Standard [2],[25],[36],[39]). Solo que en este caso, los experimentos fueron
realizados, implementando, solamente en lenguaje Python 3, cada uno de los algoritmos, antes mencionados (ver
Tabla 3). En los experimentos realizados con AES-256, los pardmetros asignados fueron los siguientes: uso del
modo de encadenamiento de bloque de cifrado, conocido como: CBC (Cipher Block Chaining Mode), con un vector
de inicializacion de IV= "0000000000000001" y uso del estdndar de criptografia de llave piiblica: PKCS7 (Public
Key Cryptography Standard #7), como método de relleno (padding) con 128 bits, empleando codificacion en
formato hexadecimal, un tamaiio de clave (KeySize) de 256 bits y una clave secreta (Key) con valor de
"00000000000000000000000000000001". Para el caso del RSA, durante la experimentacion se utilizo formato de
archivo de clave criptogrdfica de correo privado mejorado, conocido como: PEM (Privacy-Enhanced Mail), con
extension de 2048 para definicion de clave publica y privada (Public/Private Key RSA 2048), haciendo uso del
estdndar de criptografia de llave piiblica basado en relleno (padding) de cifrado asimétrico éptimo, conocido como:
PKCS1_OAEP (Public Key Cryptography Standard with Optimal Asymmetric Encryption Padding), utilizando una

Intelética 2 (2024) 9

clave secreta (Key) con valor de "00000000000000000000000000000001", obteniendo como resultado cifrado,

una secuencia en formato hexadecimal.

Tabla 1: Resultados preliminares de los métodos de cifrado estudiados que cuentan con desplazamiento de K
estdtico (ejemplo usando como texto plano: we Will@ meet at Midnight@)

ALGORITMODE | VALOR | TIEMPO | ERROR TEXTO CIFRADO
CIFRADO DE K (ms) (%)
4 59 1 Al AMPPL QIIX EX QMHRMKLX, |
Tradicional 11 30 1 HP HTWW | XPPE LE XTOYTRSE |
Cifrado Caesar 95 47 2 WE WILL, MEET AT MIDNIGHT; |
Por 120 31 2 WE WILL, MEET AT MIDNIGHT; |
Desplazamiento 255 29 2 WE WILLL MEET AT MIDNIGHT, |
De K Promedio 39.2 1.6
4 17 0 ai ampp@_qiix ex thrmkl)@
Tradicional 11 10 0 hp htww@ xppe le Xtoytrseg
Cifrado Del 95 10 1 we will meet at Midnight! |
Cesar Por 120 10 1 we will meet at Midnight!
Sustitucion 255 10 1 we willZ meet at Midnighte:
Promedio 11.4 0.6
4 4 0 007b00690024007b006d00700070259700240071006900690078002400650
07800240051006d00680072006d006b006c00782597
Cifrado Caesar 11 4 0 00820070002b0082007400770077259e002b007800700070007f002b00600
Hexadecimal 7f002b00580074006f0079007400720073007f259
95 3 0 00d600c4007f00d600c800ch00ch25f2007f00cc00c400c400d3007f00c000d3
00700ac00c800c300cd00c800c600¢700d32512
120 4 0 00ef00dd009800ef00e100e400e42606009800e500dd00dd00ec009800d900
€c009800c500e100dc00e600e100df00e000ec260b
255 4 0 00f800e600a100f800ea00ed00ed261400a100ee00e600e600500a100e200f
500a100ce00ea00e500ef00ea00e800e900f52614
Promedio 3.8 0
TOTAL: | 18.1333 | 0.7333

"

En los experimentos con RSA-2048, se utilizé como clave piiblica la siguiente: "----- BEGIN PUBLIC KEY-----.Proc-Type:
4,ENCRYPTED.DEK-Info:DES-EDE3-

CBC,17BCFA414000D9A4xHqpW 1evXi+qOMRPBfeZS9vQaGz/416cNrMIxMzBJ53G2R8psQza2bFOxds/MOLY qt3IwlV04Bvihv71VqoLDfPD0287
280ULY SehkCjsmUGgRI17v+Pe4cfz/ODhIGdNuS98JsTDZxUGbtoSvIoP/vS7+BISCwcLrrpt6BKtkkzu/1j2LG+W5J+7WqE3fnEtW9dn2y0Wbx044Th/
RzLhUHhzmfWpEB50RSF94W AzX9101M20954RWxR2sZUxJ+iF/46ruiz4LSEbDISj9PUI7VxqIXwDemWDa8SJ9+mLY5VzINNh8Y12Gh++PEu2J

DUPNQB2CRAx/j03+2nUuumHy6/X A/LkPeWGw9ULzaOTHXM1alkExbLhTy//kCFqQCd+6wSZLQVt2Hg= ----- END PUBLIC KEY----". La
clave privada que se ha empleado, se muestra enseguida: " --—--BEGIN RSA PRIVATE KEY--—- Proc-Type: 4, ENCRYPTED DEK-
Info: DES-EDE3-CBC,

2C3EEE4347B3AA0C5QnfB6QTy2PttNbDcMg5f+i7sfSuUw+WRwezScOhQIsi9BtIMY mitEeMjxpT/eH/DzNnBCPguBy VPvwACcI T 1eZrehLBrqy4Fk
by5jd5CVDXMVpYjNdRUoVy4TDVb2Y4HEMHrxpkqEO8BWHNLQMS5ULI/0tlIglDeyJbsOa2/mIFpMB20OEMFO9wDZka3hQPZesmFlt+EJmpEUD
ni0UnyvUqzY C4zLOmWKHfcZ8NbPI3lyW+DyvWGq3CLE7FIx+nyDBIMXylKyaBhfOQiuAcaQ3 Yj4bYKvczx TBf/hSX7n9Ddgej XhTnEPUaW8eX
RAgXBdVgvf3oyLe8ygktS2075aR4zcDmljflm/eCLrQPB8qv6arDp710vsLdCzToAnU1JciLcEi4LV5gajDoPTYfaVrvF+ZY sBdybKpfohg3 1txdAZxA
MEDFXwp/+B6021bk85x+MW440LY7Bj YITPE+EXt9aCb7AiKRaredKyjM+/2bxkkOQ4HF8fKLNvQrKeggLF1xQUIMUu9I9qBjQR 1 pztBmhyxC2
Hs+HnVFFvM+mtolgDOZtj7NrOi+vNxnjUrd+q405R7MKW SRUIASfQFf7UHDbC2FtpLxrWPXc4UvHY pYK9caMbwjqlqzUIgUoOFZz6bopv0eCkT
GeeyltOJ5VZAI8BkxseAAC3UNeG85tdhBQ3/zbBqiM98dR3GNzVor6CaDqqBvbhDUBe+ef/k6Scx Vjtx/xUu+VBEGD 1sMTB+bjlwRmTithnqyXeG2
mx8RGQrUKWMOFrDmegx11WQ+zKD0aJ2QzL56VyGP01DulJtx8QfijRKvbtVzD8qQgCpvSMz2WBCYhfrx T4DdDxDSER4FKoyK+Tx65WGiJWK
MrA1rR+mR1nGnoziVa7XRWAZzT7swTXkwtKkY Ocrv3thEHPmsdy/BpMDFjw+JvID3tdDOpR;j5zG2yZFvKOWITAB+fWGaG5HY4QgG2i4UrokG
1lyHC9atXTWUa4Nnj6nY q7ksVppGeensP3ZI+8kL6Mh4ho+538xr4ZYORPUxqyHUrHQNG6sjrCg/3L/ahgmh9oclIC8gQozf6EY 1 AghX 7TnCiWevTmFJh
makEWZg4LB3DyyYrPCOjJA8dDVaCbERhEw2DydM6bp/MHjorOX8RkeygxthcCco6pSKMxfADu/92cWaw 1 GAkpFh1iBmmj6uaVZZy+bnAN1jA8t
0srcv4E6Ff0ZmsZD0QdXazjXplG69aIMK3Snd8nT/dE86GqMgKoCYNAXeF+T 1fa+AiEV4JuJluRrZjknmoBFl+4q1ZzUgbH6MsxKtZ5SjZgzjaZdEX
YpZwecnzPIOm+QdQtfpQbUIMsMdT4iwBtzJfKSqvCDO05 Ax3sif TfLzdyWvOvip9eEXFrohTLSzgC88a9220qycp3erXQ/OGTFDmTrsIohu9U 1hGTup
T4mciErCYKoU/hmvHLjRbZRXan+10VcHuE4xrrTYRz9tB+JzxjQ1 YJsPGo8nF3f+qV9/jV6W;jzZPKd47QE4sBz++VPRZWEVso/EkOpkljSXzACCly

10xrEu90oWr3UCm5nloXym+ttPxbXjJYLLaZ/vARBS51IQb3QCiydihsDxW{LCw ----- END RSA PRIVATE KEY----- ". Estas claves fueron
generadas en lenguaje Python 3, utilizando la libreria "pycryptodome"” [46]. En lo que concierne con la
experimentacion de RC4, se utilizaron valores estdndar definidos por la libreria "pycryptodome" [46] de Python 3.
También, fue empleado el formato hexadecimal con codificacion: UTF-8 y como clave secreta (de 128 bits), se

asigno un valor de "00000001".

10 Intelética 2 (2024)

Tabla 2: Resultados preliminares de los métodos de cifrado estudiados que cuentan con desplazamiento de K
dindmico (ejemplo usando como texto plano: we Will@ meet at Midnight@)

ALGORITMO Test TIEMPO(ERSOR TEXTO CIFRADO
DE CIFRADO ms) (%)
Test 1 11 0 000006900c300560042002a00¢9005200ac0043002e004200d5006925d70044005700370064004700ce00690
094002f00dd00690058003800a10040009600220059003900b6006900d2006900cd006900d70069009e003500
Hexadecimal b4004d00d1006900¢6005225fc0069
Random Test 2 10 0 00a2002b0093002200520032006900420091002800b3004700d5006925¢5003 2008900690090002300b400470
0be005900dd0069008900690082002d00ca00560089006900900043008e002500b3004f00b400460095003200
Caesar 2005b00d1006900dd006925ba0027
Promedio 10.5 0

004d006f007a0078003e00640023008e006c0077007a007a0030002d003c00560083003a003a0060003a00740026259300
520061006c0035005e00280065006400640055006e0064005a0053002600430048006c0047004d00870038008900260036

Noised Test 1 88 0 0027006¢0040007d00600790065003c0092009100350045007c0021007d008d003c0086004c0032004900410025004c003
0026009300922593008e008500fe0025006200fd0063007500fe0050003700fd008a008b00ff0021005100fd0027006b00fd

Random 0095004700fe0069003¢00fd0024002300fe0068002500ff003e004a00ff0039007700fd0057007200fe007b003000fe002€0

. 07100ff0032001f00fe0088005f00fe0046006900fe005f003400fe004b003d00fe0084005200fd006a008400ff0089003600fd
Hexadecimal 0083007e00fe0051006600fd0087008000ff005d006800fe008f008600ff0082004600fe0054008c00fe006e002100fd007f00

6d00ff003f007400fd006f002900fd002f004b00ff0080006300ff005005700fd0075005a00ff0094006700fe008d004200ff00
66004500fe0070002c00ff007a009300ff007e002e00fd0061008700ff0029001e00fe002b007900fe0020006c00fd00760054
00ff0022004300fe0044005800fe0059009400fd002a005b00ff001f005600fd002d003900fe004f007300ff0037003300ff004
8009500fd0072008100fd006b008a00fe002c004f00fe0060003800fe004a002a00fd0033005c00fd0053009000ff003d002f0
0fe0041007b00fe004e005d00ff003b003100ff006c003a00ff0031004900fd0090002000fe0071002400fd0026007800fe007
3008200fd0085007f00fd0042007600fe005b004e00fd0034002200fe0028008f00fd005c004400fe0081002b00fe006d0028
00fe003c005500ff008c005000ff008b007000ff0091008800fd0062006a00fd007c004000ff0064003500fd001e005900ff006
7003200ff0058003b00fe

008c0035004c00280090005900800049008700410041004c0058006a004d0090002600380068004500380023005d259300
8f008c00870046008d002d007800680059001e007c0059005a005a001e007a00290087002c008e0046006b0025001e0025
Test 2 96 0 0062008700260039004b0045005f004d0031003e005c003c0072003b0073003f004d0043002b003c003f00670045004a006
d001e0022006025930035003100fd0075002a00fd0077004c00fd004e002700fe007e008900fd0049008000ff0094007b00ff
0021007a00fd0055005100fd002f006f00fd0067003c00fe0034008400fe0083008200ff0072004f00fe006f002100fe0069004
d00ff0091002200fe005e001f00fe0071008500fe0070006600fe0040004700fe0081005b00fe0095007500ff003d005e00fe0
063006b00fe0037002800fe0027007900ff005d007300fd0089003200ff0024003200ff0093004a00ff0057007600ff004d004
b00ff003b002c00fe008b006400ff0088007400fe0048006c00fe003e006100fd0042002400ff008a006300fd0052005800fe0
08d007f00ff0050008100fe0053004000fd006c003800ff0036009100fd004f003700fe005f007e00ff00850080b00fd00200087
00fd0065005900ff0059004200fd006a008800fd0064005c00ff0087007700fd008e005200fd0044008f00fe002b004e00fd00
2d002300fe005b003400fe0056009400fe0039005300fe007b004800fe0066002000fd0082009200ff0092005700fe007d006
e00ff002e007d00fe0074001e00fd0086007800fe002a003d00ff0054003600fe0032005600ff006e003b00fd0033002e00fd0
07c008300fe005c009500fe0076004400fe004c009300ff003a005500ff006d002d00fd0051004300ff0029005000ff00790069
00fd007f008a00ff0047002f00fe001f003000ff0061004600fd004b005400ff0084007100fe0038008600fd0060007000fd006
2003300fd0030006500ff

Promedio 92 0

00290076004d008c0080005d0028007f007600900024002700350042004d0022005b005a002b005006b00750088008700
3400510088002a007500592593009400350048002400770024008b003d006100890069002800460046007700280068004
Noised Test 1 101 0 30054008e00410087005300240066001007d004b0042002f001f0080026003800570024004d008b00870062002700550
03e002b003e003e00210038008f002500420076004300720070002b007f005200260064008c0056005c0022007f0077004d
Random 1- 00820086006300682593003e0022003100fe00fd0094004100fe00fe004f006b00fd00fd0060008900fd00fd006002e00fd00
fd0074008200fd00ff004b008000ff00ff0082009400fd00fe004200700ff00fe0030004500ff00fd0073002300f00ff00820046
NN 00fe00fe0056003300fd00fe0021008d00ff00ff0027007¢00ff00fd0052003900ff00ff002d002700ff00fe004€007100fd00fe0
Hexadecimal 083007e00fe00fd0086008600fe00fd003d007400fd00ff0032008400ff00fd0071001e00fd00ff008d003f00fe00fe009200220
0fe00fd0057005b00fd00fe003300600fe00ff0022004300d00ff0026005500fe00ff0053006700fd00fd003a006200fd00fe0
04d006300ff00fd0091004400fd00fe006d003d00fe00fd0030008c00fd00fe0040006500f00ff0093003200fd00fd00640038
00fd00fd003c003400fe00fd0037003b00fe00ff0059007800fd00fe0042005800ff00Ff0061004b00FFO0f0041003500ff00fdO
031002000fe00ff005f002900fe00fd0051006000ff00ff0065002800ff00ff0058003600fe00fd0045008300fe00ff0078008200
#f00ff006008800ff00ff0067006400fd00ff0069002b00fe00fd0050003c00f00fd007d009200ff00fd0095008500fd00fd0054
007900fe00fe0079005f00ff00fe0026007300fe00ff0081006300fe00ff0062003a00fd00ff003f008200ff00ff0044002d00fA00
fd002c009300fe00fd0048003700fd00fe0036004c00ff00fd0084003000fd00FfO06600600ff00ff007c004€00ff00ff008f002f
00fd00ff0062004900fe00fe0072002500fe00fe004c005600fd00fe008c007200fd00fe0023004f00fd00fd0047008100fe00fe
0020002400fe00ff008005200ff00ff0072006d00fd00fe0049002¢00ff00fe005007200fd00fd0070006100fd00fd00880047
00fe00fe006007600fd00fe005d008f00fe00fe0039005e00fd00fd0068002200fd00fe0076005000e00ff0028009500fe00fd
002€009100fe00fe0085004000fe00fe007f006600fd00fd001e006€00fe00fd

Test 2 96 0 006f007f005f0092005f004b0066004800500063003a003100330092005f0039006c006d0051007e004f0060006d00720027

0082006d0078003200212593009500540093003a004a0072007d005b008c0067001f00660081005c002d0066008b008600
900095007c005b004f003a00350045008c008e0091002b003100950081004c004a003a005e001e0083005c008800390074
0051004400780022004d0091007d007a00850038003400610051006300580056001f00940061008e0076003e0094006500
9500340092008d259300290083006400fe00fe004d005c00ff00ff0028004400fe00fe0048007800fe00fe0075008600fe00fe
0068007600fe00ff006a007700fd00ff0064004d00fe00ff0063005000ff00fd0041005800fe00fd0057003b00fe00fe0059007e
00fd00fe0026002000ff00fd0021006e00fe00ff005e008b00fe00ff008c007100fd00fe0035004c00fd00ff008e001e00ff00fd0
036006f00fd00fe0055006900fd00fe008f005e00fe00fd0065006600fd00fd0023003000ff00fe0049002e00fe00fe00840045
00fd00fd003d002b00ff00fd007b005200fd00ff005a003600ff00fe002e004100ff00fe0043006800ff00ff007f006700ff00ffO0
73003200fe00ff0091007c00fd00ff0071003d00ff00fd0024007000fd00ff006e008500fd00ff0020003a00fe00ff003c004e00f
e00fe002a008000ff00ff0089005900fe00fd001f004000fe00fe0031003300fd00fe0069005100fe00fe0029003e00fe00fe008
0003800ff00fe0025004600fe00ff0042003f00fe00ff0074009500fe00fe007c002600fd00ff0077005f00fd00ff008a003400fd
00fd0090004900fe00ff0079004300fd00fd0047006b00fd00fe0030009400fd00fe006d005b00Ff00ff003005300fe00fd003f
007300fe00ff0081003500fd00fe0060004800fe00fe007e003900fe00fe0040005500ff00fd0037006200fd00fe0022008900f
e00ff0062008400ff00fd0056007b00fd00ff0087009100fd00ff002f005400fe00fd0051002500ff00ff0070006c00ff00fd007a0
08a00fe00fd0038008800fd00ff0052006a00fe00fd0095007200ff00ff0044002300fe00fe0085004700fe00fd0076002400fe0
0ff003a002900ff00fd003b002700fe00ff004a004200fe00fe004b003700fe00fd006b002c00ff00fd008d005a00ff00ff004e00
2f00fd00ff008b002a00fd00ff0053005700fe00ff0066007900fe00ff002d007500fe00fd0093003c00fe00fe0082008100fd00f

d002c005d00fe00fe005d008f00ff00ff0046002800fd00fe0088008700ff00ff

Promedio 98.5 0
TOTAL: 67 0

Para el caso del algoritmo 3DES, se usé el modo de libro de codigo electronico, conocido como: ECB (Electronic
Codebook Mode), con valor de "000000000000000000000001" como clave (secreta) de 24 bits, obteniendo la
secuencia cifrada en formato hexadecimal. Finalmente, los resultados cifrados para el algoritmo: DES, también

Intelética 2 (2024) 11

fueron en formato hexadecimal con codificacion UTF-8, empleando una clave de 56bits con el siguiente valor:
"00000001" y usando el modo de libro de cédigo electronico, conocido como: ECB (Electronic Codebook Mode).
En lo que concierne a los tiempos de ejecucion de cifrado/descifrado, fueron calculados para cada texto plano, en
cada repeticion de la validacion cruzada, y al final, se hizo un promedio. Los errores, fueron considerados al
momento de descifrado. Estamos en el entendido que la ME contiene el texto cifrado, acompafiado del tiempo de
cifrado y una etiqueta que corresponde al texto plano a cifrar (asi como, la columna que guarda el error, pero ello
se hace en tiempo de ejecucién, ya que, inicialmente tiene cero). Por lo tanto, se procede descifrando el texto y si
no es igual que la etiqueta de clase, se procede a anotar un error en la columna correspondiente de la ME, todo ello,
es coordinado por cada repeticion de la validacién cruzada.

Tabla 3: Resultados preliminares usando algunos métodos o algoritmos de cifrado tradicionales (un ejemplo de
muestra, usando como texto plano: we will§ meet at Midnigh

ALGORITMO Test TIEMPO(| ERROR TEXTO CIFRADO
%
DE CIFRADO ms) (%)
Test 1 57 O 303030303030303030303030303030314e86f8918b532c730b96262c2a7739bade2d5c68c7e3e219bc5a943d0e
bd0ccO
303030303030303030303030303030314e86f8918b532c730b96262c2a7739bade2d5c68c7e3e219bc5a943d0e
AES-256 Test 2 97 0 beloerd
Promedio 77.0 0
Test 1 96 O 8ef526e608728054fa749463334a6e6bc7cb853aac33ea%e6612e2ddb9ccf7f2172ec8e87c3b893fd83dd0db6af0

4ab5118e25434280b7bcc4d03f34f029334470d09532a5663417bb092772e1bad4552f53d7f05059cc1cdbeeaSd
RSA-2048 €917b0762f4095974b222d36c6dd73e7b8313d55649c746b37238c94c809b00caed28590156c81329ebeff9098
6167ae916ee2a5596c1ef95afed 7f57a5df8c947922418dbc67df6dfald700b1d0cceedddecade0cdf3f72f8fd2ac9
7c¢2b4c33c79de4c063251069957d4d7ed58e0988838773d9903686719473859259be20aaf0aa09d6f0alebad18
beceb426393b204a6c42cc7a4d440f88aee97880ffaed78e93e8991

Test 2 121 0 b4de0256e0f25f994d03f30a130887f7074fc7a181dbb11c2d0d5d5d9b0234686ed546318c10bb0Ob1100fe05881
d59104bcf838e3817dfbfe9a303d2ac3eeaef37473b3f3b6c8461038a05d2408ff22f3d5c6498b9fe77740794aab5
9b0ff04174400719634c384ada8b19d619ed804c8f58bacfacleec3897bb9057fc80cf27c108d8ab07d91fc828c0a
bedbd0556987a1789¢c9df6d963c23d6f5c8c411e75ce18bc129b1022c9899ff24c64493c0d5882a2b0e6fde129a8
4908b4f0226a476ebbeb7fbb949978d5ccaedb5cd3ealb3ee8f728a17b6cb32070f0998af86c406824de74fe9e85
f2c379b5e94238375cfdf05a614e1bl6aaleeal5e295e934c64

Promedio 108.5 0
Test 1 55 1 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7
3DES Test 2 122 0 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7
Promedio 88.5 50
Test 1 2 O O 949f2244e3ab422b0d24eab9bed4dad30d0a89b2fdf9944895b73f9182666fd2
Test 2 3 1 O 949f2244e3ab422b0d24eab9bed4dad30d0a89b2fdf9944895b73f9182666fd2
RC4 .
Promedio 25.5 0
Test 1 28 0 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7f0a688c1d906a355
DES Test 2 39 0 3e00ddc198431704c76f0db605a0a7cacfb3dc742edbeba7f0a688c1d906a355
Promedio 33.5 0
TOTAL : 66.6 10

4 Conclusion

Los métodos de cifrado de datos con desplazamiento K estético, aqui estudiados (ver Tabla 1), aunque en algunos
casos, su proceso de encriptado es mds rdpido que las propuestas basadas en aleatoriedad (cifrado dindmico), asi
como, los algoritmos tradicionales, se puede apreciar vulnerable la seguridad de dichos métodos estéticos, debido a
que, no presentan variaciones en el contenido para una misma cadena de texto plano a cifrar. En otras investigaciones
[20] se sefiala que este tipo de casos podrian ser descifrados usando un diccionario con uso de procesamiento de
lenguaje natural mediante inteligencia artificial. Ademads, dichas propuestas, cuando se usa médulos 95, 120 y 255,
no se logra cifrar el texto plano (ver Tabla 1). En cambio, los métodos de cifrado basados en aleatoriedad, ya sea,
por sustitucidn o por desplazamiento de K[i], se observa (ver Tabla 2), que en algunos casos, la diferencia promedio
de velocidades para el cifrado de datos, es mayor, pero no sustancial, ya que, no tarda en ningtin caso mds de un
segundo (1000 ms). Sin embargo, hay que recordar que los textos planos empleados son menores de 255 caracteres.
Empero, resulta més segura la informacién con cifrado aleatorio, ya que, el contenido del paquete, para una misma
cadena de texto, produce distinto resultado en cada ejecucion, mientras que en las propuestas con inyeccién de ruido
hexadecimal, genera un paquete cifrado de mayor tamafio, pero ello lo hace menos vulnerable a ataques, en

12 Intelética 2 (2024)

comparacién con el resto de los métodos, evaluados en esta investigacién. Una desventaja de los métodos de cifrado
basados en aleatoriedad, aqui estudiados, es que pueden llegar a seleccionar, caricteres de la tabla ASCII que son
no imprimibles en pantalla, ello puede producir pérdida de informacién. Sin embargo, en esta investigacion, las
propuestas basadas en médulo 95 y médulo 120, no presentaron dicho problema, al ser utilizados niimeros
hexadecimales de cuatro cifras. En cambio, las técnicas o algoritmos tradicionales para el cifrado de datos, los
aqui estudiados, solamente uno de ellos (RSA-2048), logro reportar cifrados dindmicos (ver Tabla 3), pero demora
mds tiempo en el proceso de cifrado, en comparacion con las propuestas aleatorias, basadas en hexadecimal, aqui
estudiadas. Los resultados obtenidos con AES-256, no muestran ser dindmicos, ya que, genera siempre la misma
secuencia de cifrado como resultado, cuando se utilizan los mismos valores de la clave secreta y vector de
inicializacion. Sin embargo, ello no indica que el cifrado sea inseguro, ya que, en los experimentos se observo un
0% de error. También, el algoritmo 3DES, no presenta resultados dindmicos en la secuencia cifrada. Ademds, el
proceso de cifrado tardo mds tiempo que el reportado por AES-256. Adicionalmente, se observo la presencia de un
50% de error en el descrifrado de datos, cuando el texto plano de entrada contiene caracteres, cuyo valor ordinal
estd fuera del rango de la tabla ASCII (en el ejemplo de prueba de la Tabla 3, se presenta en el texto de entrada el
caracter: '@'). Otro factor observado, fue la presencia de error, cuando se utilizan entradas de texto plano mayores
al definido por 3DES, que en esta investigacion se han delimitado a 24 bits (en este caso, se obtiene 100% de error,
al ser cortadas las secuencias de texto de entrada y ajustada a 24 bits). Del mismo modo, el algoritmo RC4, aunque
no reporta porcentajes de error, se observo que los resultados cifrados no son dindmicos. A pesar que su proceso
de cifrado es mucho mds rdpido (mds del 50%) comparado con: AES-256, 3DES y RSA-2048. Adicionalmente, los
resultados de la secuencia cifrada reportados por el algoritmo DES, no presentan caracteristicas dindmicas,
aunque se obtuvo un 0% de error. A pesar que su proceso de cifrado es mds rdpido que los algoritmos: RSA-2048,
AES-256 y 3DES, no logré superar en velocidad al RC4. En cambio, utilizando RSA-2048, se observo que regresa
un resultado dindmico, aunque tarda mds tiempo en el proceso de cifrado que los algoritmos: AES-256, RC4, DES
y 3DES. En este caso, también se observo un 0% de error. Por iiltimo, con respecto a las nuevas propuestas
dindmicas, basadas en formato hexadecimal, con inyeccion de ruido, y teniendo en cuenta que los algoritmos: AES-
256, 3DES, RC4 y DES, no reportan resultados de cifrados dindmicos, en este contexto, los denominados como:
"Noised Random", superan las expectativas, en esta investigacion, porque reportan siempre resultados dindmicos
distintos en cada ejecucion del algoritmo, y aunque tardan mds tiempo que: AES-256, 3DES, RC4 y DES, en el
proceso de cifrado de datos, superan la velocidad de los tiempos reportados por el algoritmo: RSA-2048 (ver Tabla
2 y Tabla 3), que en esta investigacion, fue el vinico algoritmo de los métodos tradicionales, aqui estudiados, que
logro reportar secuencias de cifrado dindmicas distintas en cada experimento, modo similar a lo observado con los
métodos: "Noised Random" y "Hexadecimal Random Caesar". Sin embargo, esta ultima propuesta "no ruidosa”,
ademds de reportar secuencias de cifrado mds nitidas (menos extensas), logro superar en velocidad, al resto de las
técnicas (de cifrado dindmicas, aleatorias y tradicionales) en los tiempos para el encriptado de datos, entre un
2.4% y 10.33 % veces mds rdpido.

En general, todos los métodos de cifrado, aqui estudiados, reportan buen margen de acierto (excepto los algoritmos:
3DES y Cifrado Caesar con desplazamiento por K); y, la velocidad de cifrado, en promedio difieren
aproximadamente entre 35.4% y 88% milisegundos, para el caso de los métodos basados en desplazamiento de K 'y
K[i] aleatorio. Por ltimo, observando resultados presentados por otros autores [20], podemos aprecia que discute
acerca del uso de un nuevo formato denominado Pseudo-Hexadecimal, el cual, se introduce a los alfabetos en el
paquete de cifrado, con la intencién de inyectar ruido, este podria ser un trabajo futuro a desarrollar, llevando a cabo
la aplicacién de los métodos aqui estudiados, usando dicho formato Pseudo-Hexadecimal.

Agradecimientos

Este trabajo fue financiado parcialmente por el Tecnolégico Nacional de México, registrado con clave: 19329.24-
P.

Referencias

[1] Delman, B. (2004). Genetic Algorithms in Cryptography. Thesis for the Degree of Master of Science in
Computer Engineering. Rochester Institute of Technology (RIT Scholar Works). Department of Computer
Engineering.

Intelética 2 (2024) 13

[2] Mendoza, J.C. (2008). Demostraciéon De Cifrado Simetrico Y Asimetrico. Ingenius. Revista de Ciencia y
Tecnologfa, nim. 3, pp. 46-53. Universidad Politécnica Salesian. Cuenca, Ecuador. ISSN: 1390-650X.
Disponible en: http://www.redalyc.org/articulo.0a?id=505554806007.

[3] Kalsi, S., Kaur, H., & Chang, V. (2018). DNA Cryptography and Deep Learning using Genetic Algorithm with
NW algorithm for Key Generation. Convergence of Deep Machine Learning and Nature Inspired Computing
Paradigms for Medical Informatics. Image & Signal Processing; In Journal of Medical Systems, volume 42,
Article number: 17. DOI: https://doi.org/10.1007/s10916-017-0851

[4] Reddaiah, B. (2019). A Study on Genetic Algorithms for Cryptography. International Journal of Computer
Applications (0975 — 8887). Volume 177 - No. 28, December. Department of Computer Applications. Yogi
Vemana University Kadapa, A.P, India.

[5] Sebas, C. (2023). ;Qué son los Algoritmos Genéticos en las Inteligencias Artificiales?. Manuales y Tutoriales
de Informatica. Recuperado de: https://aprendeinformaticas.com/ia/

[6] Singh, S. (2000). Los cddigos secretos. Madrid: Debate.

[7] Alvarez, D. (2019). Algunos Aspectos Juridicos Del Cifrado De Comunicaciones. Derecho PUCP, nim. 83,
2019, pp- 241-264. Pontificia Universidad Catolica del Peru. DOI:
https://doi.org/10.18800/derechopucp.201902.008. Disponible en:
http://www.redalyc.org/articulo.oa?id=533662765008

[8] Hebert, S. (s.f.). A Brief History of Cryptography. Disponible en: http://cybercrimes.net/aindex.html

[9] Rangel, E. (2002). Vecinos Envolventes para Variantes de la Regla del Vecino mas Cercano. MS Thesis,
Instituto Tecnolégico de Toluca, México. ["Variants For Nearest Centroid Neighbour"].

[10] Rangel, E., & Barandela, R. (2004). Nearest Centroid Neighbour, An Alternative in Pattern Recognition for
Detecting New Tasks in a Mobile Robot Simulator. Enviado a: 11th International Congress On Computer
Science Research (CIICC04). September 31, October 1, 2. Ciudad de México - México (Articulo En Extenso).
Disponible en: http://erangel.coolpage.biz/pappers/p2004.jpg

[11] Rangel, E., & Rodriguez, C. (2018). Un Estudio Con Variantes De La Regla NN, Como Alternativa En
Inteligencia Artificial Para Incrementar La Precision En Clasificacién De Patrones. Publicado En: Primer
Congreso Nacional De Investigaciéon En Ciencia E Innovacién De Tecnologias Productivas. Tecnolégico
Nacional De México (campus: Instituto Tecnoldgico de Cd. Altamirano). Noviembre, 2018. Cd. Altamirano,
Estado De Guerrero, México. (Articulo En Extenso). Disponible en:
http://erangel.coolpage.biz/pappers/p2018b.jpg

[12] Rangel, E. (2019). Resultados Preliminares Con Variantes De La Regla NN, Como Alternativa En Inteligencia
Artificial, Para Clasificaciéon Usando Muestras De Entrenamiento Desbalanceadas. Publicado En: Segundo
Congreso Nacional De Investigacién En Ciencia E Innovacién De Tecnologias Productivas. Tecnolégico
Nacional De México (campus: Instituto Tecnolégico de Cd. Altamirano). Noviembre, 2019. Cd. Altamirano,
Estado De Guerrero, México. (Articulo En Extenso). Disponible en:
http://erangel.coolpage.biz/pappers/p2019.ipg

[13] Rangel, E. (2022). La Regla De Los k Vecinos Mds Cercanos (k-NN) Basada En Distancia De Manhattan
(City-Block) Para Mejorar La Clasificacion De Patrones. Publicado En: Quinto Congreso Nacional De
Investigacién En Ciencia E Innovacién De Tecnologias Productivas. Tecnolégico Nacional De México (campus:
Instituto Tecnoldgico de Cd. Altamirano). Noviembre, 2022. Cd. Altamirano, Estado De Guerrero, México
(Articulo En Extenso). Disponible en: http://erangel.coolpage.biz/pappers/edgarrangel2022.pdf

[14] Kanal, L. N. (1963). Statical methods for pattern classification. Philco Rept, originally appeared in T. Harley
et al., Semi-automatic imagery screening research study and experimental investigation, Philco Reports, V043-
2 and v043-3, Vol. I, sec. 6 and Appendix H, prepared for U.S. Army Electronics Research and Development
Lab. Under Contract DA-36-039-sc-90742, March 29.

[15] Ross-Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.

[16] Sanchez, J.S., Pla, F., & Ferri, F.J. (1997). Prototype selection for the nearest neighbor rule through proximity
graphs. Pattern Recognition Letters 18, 507-513.

14 Intelética 2 (2024)

[17] Skalak, D. B. (1994). Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing
Algorithms. In: Proceedings of the Eleventh International Conference on Machine Learning (ML94). Morgan
Kaufmann, pp. 293-301.

[18] Kuncheva, L. 1., & Jain L. C. (1999). Nearest Neighbor Classifier: Simultaneous editing and feature selection.
Pattern Recognition Letters, 20, 1149-1156.

[19] Reddaiah, B. (2016). A Study on Pairing Functions for Cryptography. IJCA (0975-8887), Vol. 149, No. 10,
September, pp.4-7.

[20] Rangel, E., Rangel, K.U., Medrano, J., & Bernal, C.A., & Gonzélez L. (2023). Algoritmo Genético Para Cifrado
De Datos, Basado En Un Nuevo Concepto Pseudo-Hexadecimal Con Inteligencia Artificial. Tecnolégico
Nacional De México, Instituto Tecnolégico de Cd. Altamirano. Sexto (VI) Congreso Nacional De Investigacion
En Ciencia E Innovacién De Tecnologias Productivas. Noviembre, 2023. Cd. Altamirano, Estado De Guerrero,

Meéxico. Disponible en: https://www.cdaltamirano.tecnm.mx/index.php/17-vi-congreso-nacional-de-
investigacion-en-ciencia-e-innovacion-de-tecnologias-productivas/140-tecnm-40

[21] Barandela, R., & Juarez, M. (2001). Ongoing Learning for Supervised Pattern Recognition. Submitted to
SIBGRAPI-2001, Brazil.

[22] Cover, T.M., & Hart, P.E. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Information
Theory, Volume IT-13, January, pages 21-27.

[23] Bruzzone, L., & Serpico, S.B. (1997). Classification of Imbalanced remote-sensing data by neural networks.
Elsevier Science B.V., 0167-8655,97. PH S0167-8655 (97) 00109-8.

[24] Eui-Hong (Sam), & Karypis, George (1999). Centroid-Based Document Classification: Analysis &
Experimental Results.

[25] Rodriguez, J. (2020). Operadores Genéticos Aplicados A La Criptografia Simétrica. Proyecto De Grado.
Universidad Distrital Francisco José De Caldas. Facultad De Ingenieria. Ingenieria De Sistemas. Bogotd,
Colombia.

[26] Javidi, B., Zhang, G.S., & Li, J. (1997). Encrypted Optical Memory Using Double-random Phase Encoding.
Appl. Opt. 36, 1054-1058.

[27] Rueda, A.S., & Lasprilla, M. (2002). Encriptacion Por Conjugacién De Fase En Un BSO Utilizando Sefales
Opticas De Baja Potencia, Rev. Col. Fis., Vol. 34, No.2, (2002), P.P.636-640.

[28] Rueda, J.E., Romero, A.L., & Castro, L.M. (2005). Criptografia Digital Basada En Tecnologia Optica. Bistua:
Revista de la Facultad de Ciencias Bdsicas, vol. 3, nim. 2, julio, pp. 19-25. ISSN 0120 - 4211. Universidad de
Pamplona, Colombia. Disponible en: http://www.redalyc.org/articulo.0a?id=90330203

[29] Linfei, C., & Daomu, Z. (2005). Optical Image Encryption Based On Fractional Wavelet Transform, Opt.
Comm. Vol. 254 (2005) p.p. 361-367.

[30] Hossam, E.A., Hamdy, K., & Osama, S.F.A. (2007). An Efficient CHAOS-BASED FEEDBACK STREAM
CIPHER (ECBFSC) For Image Encryption And Decryption. Informética, volumen 3, pp. 121-129.

[31] Pisarchik, A.N., & Flores-Carmona, N.J. (2006). Computer Algorithms For Direct Encryption And Decryption
Of Digital Images For Secure Communication, Proceeding of the 6th WSEAS international conference on
applied computer science (Canary Islands, Spain), pp. 29-34.

[32] Pisarchik, A.N., & Zanin, M. (2008). Imagen Encryption Witch Chaotically Coupled Chaotic Maps. Elsevier
Physica, abril [en linea], D 237. Disponible en: www.elsevier.com/locate/physd.

[33] Rajan, B., & Saumitr, P.A. (2006). Novel Compression And Encryption Scheme Using Variable Model
Arithmetic Coding And Coupled Chaotic System. IEEE Transactions on circuits and system- I, abril, volumen
53 (nimero 4).

[34] Jiménez, M., Flores, O., & Gonzilez, M.G. (2015). Sistema para codificar informacién implementando varias
Orbitas cadticas. Ingenierfa. Investigacién y Tecnologia, vol. XVI, ndm. 3, julio-septiembre, pp. 335-343. ISSN

Intelética 2 (2024) 15

1405-7743 FI-UNAM / ISSN: 1405-7743. Universidad Nacional Auténoma de México. Distrito Federal,
Meéxico. Disponible en: http://www.redalyc.org/articulo.oa?id=40440683002

[35] Fulgueira, M., Herndndez, O.A., & Henry, V. (2015). Paralelizacién Del Algoritmo Criptografico GOST
Empleando El Paradigma De Memoria Compartida. Laimpsakos, nim. 14, pp. 18-24. Fundacién Universitaria
Luis Amigé Medellin, Colombia. E-ISSN: 2145-4086; julio-diciembre. DOI
http://dx.doi.org/10.21501/21454086.1633. Disponible en:
http://www.redalyc.org/articulo.oa?id=613965326004

[36] Barranco, F., & Galindo, C. (2022). Criptografia bdsica y algunas aplicaciones. Universidad Jaume I,
Departamento de Matematicas, Castellon, Espaiia. URL:
https://repositori.uji.es/xmlui/bitstream/handle/10234/201359/TEM_2022 Barranco_B1%C3%A1zquez_Franci
scoMiguel.pdf?sequence=1

[37] Gémez, S., Arias, J.D., & Agudelo, D. (2012). Cripto-Andlisis Sobre Métodos Clésicos De Cifrado.Scientia Et
Technica, vol. XVII, nim. 50, abril, pp. 97-102. Universidad Tecnoldgica de Pereira Pereira, Colombia. ISSN
0122-1701 97. Disponible en: http://www.redalyc.org/articulo.oa?id=84923878015. URL:
https://www.redalyc.org/articulo.0a?id=84923878015

[38] William, S. (1999). Cryptography and Network Security: Principles and Practice, 2nd edition, Prentice-Hall,
Inc., pp 23-50.

[39] Progress Software Corporation, Telerik (2020-2022). Cifrado Y Transferencia De Archivos: Los Mejores
Cifrados Seguros Para La Transferencia De Archivos. Ipswitch Blogs. Recuperado de:
https://ipswitch.com/amp/es/los-mejores-cifrados-seguros-para-la-transferencia-de-archivos/

[40] Luciano, D., & Prichett, G. (1987). Cryptology: From Caesar Ciphers To Public-key Cryptosystems. The
College Mathematics Journal, vol 18 pp 2-17.

[41] Barandela, R., Sanchez, JS., Garcia, V., & Rangel, E. (2003). Strategies for Learning in Class Imbalance
Problems. Pattern Recognition, Vol. 36, No. 3 , pp. 849-851, 2003. Rapid and Brief Comunication (Pergamon)
ISBN: (PII: S0031-3203(02)00257-1. 0031-3203/02/).

[42] Barandela, R., Sanchez, J.S., Garcia, V., & Rangel, E. (2001b). Fusion of techniques for handling the
imbalanced training sample problem. In: Procedings of 6th Ibero-American Symposium on Pattern Recognition,
Brasil, 2001, 31-40.

[43] Hart, P.E. (1968). The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory, 6,4,515-
516, Vol. IT-14, No. 3, May.

[44] Van, H.C., & Jajodia, S. (2011). Encyclopedia Of Cryptography And Security. Springer Science & Business
Media, 2011. 1416p. ISBN: 978-14419-5907-2.

[45] Van-Tilborg, H.C.A. (2005). Encyclopedia Of Cryptography And Security. Springer, pp 114-115, 201-202.
TUE Research portal. https://doi.org/10.1007/0-387-23483-7, (09/11/2024).

[46] PyPI (2024). ‘"Pycryptodome 3.21.0". Python Software Foundation. Retrieved from:
https://pypi.org/project/pycryptodome/, (13/12/2024).

