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Abstract Synthetic Aperture Radar Interferometry (INSAR) is a widely used technique in various sciences such as
remote sensing, geodesy, seismology, volcanology, among others, with highly diverse applications. Some of these
include estimating surface subsidence or uplift, post-seismic deformation, and creating digital elevation models. In
the modern digital era, Artificial Intelligence (Al) and Machine Learning (ML) are revolutionizing many fields of
knowledge, with a wide range of uses, from urban planning to the optimization of productive tasks. Broadly
speaking, geospatial intelligence (GI) refers to the utilization of Al in the field of geospatial data. In this context,
and given the vast number of areas covered by Gl, this study focuses on the application of Gl in the field of INSAR.
To this end, a comprehensive review of the current state of the art was conducted, analyzing both supervised and
unsupervised ML techniques tested on real and synthetic datasets. The aim is to contribute to understanding the
current possibilities and limitations of Al-assisted interferometric processing. The study presents cases in urban and
rural environments, identifying the most common themes in the use of Gl in InSAR, the ML methods employed,
and the conclusions drawn. It can be anticipated that, in general, the authors studied preferred supervised ML
methods over unsupervised ones, with most of these studies being concentrated in Asia. Finally, it is worth noting
that among all the currently available satellite images, those from the Sentinel-1 satellite were the most preferred
for conducting these investigations.

Resumen La interferometria de radar de apertura sintética (por sus siglas en inglés InSAR) es una técnica
ampliamente utilizada en muchas ciencias tales como la percepcién remota, la geodesia, la sismologia, la
vulcanologia, entre otras, con aplicaciones muy variadas. Algunas de ellas son: la estimacién de la subsidencia o el
levantamiento de la superficie, la deformacion postsismica o la creacion de modelos digitales de terreno. En la era
digital moderna, la inteligencia artificial (1A) y el machine learning (ML) estan revolucionando muchisimos campos
del saber, con variados usos, desde la planificacion urbana hasta la optimizacion de tareas productivas. En términos
generales, se entiende por inteligencia geoespacial (IG) al aprovechamiento de la 1A en el campo de los datos
geoespaciales. En este sentido, y debido a la enorme cantidad de areas del conocimiento que abarca la IG, para este
trabajo se ha acotado el anélisis a la aplicacién de la IG en el campo de la INSAR. Para esto se realizd una revision
exhaustiva del estado del arte actual, analizando tanto técnicas supervisadas como no supervisadas de ML, probadas
sobre conjuntos de datos reales y sintéticos. Con esto se pretende realizar una contribucién acerca de las
posibilidades y limitaciones actuales del procesamiento interferométrico asistido por IA. Se presentan casos en
ambitos urbanos y rurales, identificando los temas mas comunes de la utilizacion de la IG en InSAR, los métodos
de ML empleados y las conclusiones a las que se arribd. Se puede adelantar que, en general, los autores estudiados
prefirieron los métodos de ML supervisados por sobre los no supervisados, ubicandose la mayoria de
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estos trabajos en oriente. Finalmente destacar que, de todas las imagenes disponibles actualmente, fueron las del
satélite Sentinel-1 las preferidas para llevar adelante estas investigaciones.

Palabras clave: Inteligencia Geoespacial, DInSAR, Interferometria Radar, Inteligencia Artificial, Machine
Learning, Revision.

Keywords: Geospatial Intelligence, DINSAR, Radar Interferometry, Artificial Intelligence, Machine Learning,
Review.

1 Introduccién

El avance de la inteligencia artificial (I1A) ha revolucionado multiples areas del conocimiento debido a su capacidad
para procesar, analizar y extraer informacion valiosa a partir de una vasta cantidad de datos geoespaciales, marcando
un hito en como entendemos y aprovechamos nuestro entorno. Su uso ha mejorado notablemente la precision de los
analisis espaciales y ha desencadenado innovaciones sin precedentes en la toma de decisiones estratégicas y en la
comprension de complejas interrelaciones entre los elementos geogréficos, dando origen a la creacion de un nuevo
campo del saber: la inteligencia geoespacial (IG). Este campo del conocimiento se centra en la recopilacion, analisis
y visualizacién de datos geogréficos para obtener informacion significativa sobre el mundo que nos rodea. Esta
disciplina tiene aplicaciones en una amplia gama de campos gracias a su capacidad para potenciar la deteccion de
patrones y tendencias en un conjunto de datos espaciales. En particular, la interferometria SAR o InSAR es una
técnica utilizada para la generacion de modelos digitales de terreno y el monitoreo de deformaciones de la superficie
a partir de imagenes de satélite radar [26] y [33]. La Interferometria Diferencial (por sus siglas en inglés DINSAR)
explota la fase del SAR que es sensible a los cambios de elevacién ocurridos sobre la superficie del terreno entre
distintas imagenes obtenidas por un satélite sobre una misma zona [19], [44] y [45]. Si la topografia del terreno es
conocida, es decir si se dispone de un modelo digital de terreno, la correspondiente componente de fase puede ser
sustraida de la fase INSAR, dejando la componente relacionada con la deformacién del terreno; esto hace posible la
deteccion de pequefias deformaciones de la superficie terrestre con una precision del orden de centimetros.

DInSAR, que en forma creciente se aplica al estudio de las deformaciones cosismicas y post sismicas [12] y [45],
compara la informacién de fase de dos imégenes SAR tomadas en el area epicentral de un sismo, una antes y otra
después del evento. La diferencia de fases resultante origina un nuevo tipo de imagen denominada interferograma.
De producirse la deformacidn del terreno, el interferograma muestra un modelo de interferencia formado por franjas
(fringes) que contienen toda la informacion sobre la geometria relativa entre las dos imagenes [30]. Cada franja
indica un cambio de la distancia suelo-satélite de 28 mm. Esta gran precisién permite el estudio de las deformaciones
originadas por terremotos de magnitudes moderadas (M ~4 a 5) que de otro modo resultan imperceptibles en los
estudios de terreno. Esta técnica ha sido utilizada en Argentina para conocer la dindmica de los glaciares, terremotos,
volcanes, deslizamientos y subsidencias asociadas a la explotacion de acuiferos asi como para actividades mineras
y petroleras, entre otros [21], [23], [37] y [38]. También se ha utilizado para medir la deformacion del terreno
vinculada a sismos de moderada a alta magnitud como los de Sichuan, en China en 2008 (MW 7,9) [69], L'Aquila,
Italia en 2009 [74], para caracterizar procesos de deformacién volcénica y movimiento de glaciares [73] y [24],
entre otros ejemplos. Por otro lado, [22] han utilizado técnicas de INSAR para el calculo de rumbo y buzamiento de
estructuras no aflorantes.

La recopilacién de publicaciones estudiadas para este trabajo abarca diversas aplicaciones de 1A y el ML en el
campo de la InSAR y las geociencias. Se han revisado una amplia variedad de publicaciones, desde guias paso a
paso para el procesamiento de imagenes Sentinel-1 usando ML hasta enfoques innovadores en los que se explora el
uso de redes generativas adversariales (GAN) para el desenrollado de fase a fin de mejorar la precision de resultados
de la interferometria diferencial de radar de apertura sintética, con el fin de brindar una revision detallada del estado
del arte de la aplicaciéon de la IG en los procesamientos interferométricos.

La aplicacion de técnicas de aprendizaje automatico (ML) a la interferometria radar (INSAR) ha demostrado ser un
campo emergente con el potencial de mejorar significativamente la precision en la deteccién de deformaciones
geoldgicas. Este estudio revisa y compara enfoques que abordan esta problematica, proporcionando una vision
integral sobre el estado del arte. El analisis de los enfoques hibridos, que combinan aprendizaje supervisado y no
supervisado, revela su potencial para superar las limitaciones de los métodos tradicionales en la identificacién de
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patrones en datos geoespaciales. A través de este trabajo, se expone cdmo estos métodos podrian mejorar el
rendimiento en escenarios con datos limitados. Y si bien se han logrado avances, persisten importantes vacios en la
literatura, particularmente en lo que respecta a la estandarizacion de evaluaciones de modelos y la integracion
efectiva de datos multi-sensor. Por eso, este trabajo no solo identifica estos vacios, sino que también propone nuevas
lineas de investigacion que podrian cambiar el rumbo del campo.

2 Materiales y métodos

Esta seccién describe el procedimiento y los métodos que se han seguido para elaborar esta revision, y dado que el
objetivo es estudiar el uso de la IG en el &mbito de la INSAR y sus numerosas aplicaciones, se opt6 por realizar una
revision de alcance. Esta Gltima metodologia se ha desarrollado para brindar un mapeo de los dominios de estudio,
fuentes de datos, enfoques y métodos [54]. Si bien las revisiones de alcance son relativamente nuevas en
comparacidn con las revisiones sistematicas, se han establecido como una herramienta ideal para determinar la
extension de un cuerpo de literatura emergente y proporcionar una vision general de su enfoque [49]. En este caso,
una revision de alcance es adecuada porque el nimero de publicaciones sobre las aplicaciones de IG para INSAR ha
crecido rapidamente en los Gltimos afios y, por lo tanto, es imposible llevar a cabo una revision sistematica rigurosa
sin excluir aspectos del campo.

2.1 Planificacion de la revision de alcance: Criterio de elegibilidad

La IG y la InSAR son campos muy amplios. Por esta razén, se decidio utilizar los siguientes criterios para
seleccionar los documentos relevantes para el analisis sobre las aplicaciones de la IG en el procesamiento de
imagenes de radar de apertura sintética (SAR):

1) Los documentos seleccionados emplearon principalmente algoritmos de IA o ML para mejorar la eficiencia de
los procesamientos interferométricos o disminuir sus limitaciones. Se incluyeron métodos de ML supervisados y no
supervisados. Por otro lado, se excluyeron aquellas publicaciones que utilizaron polarimetria SAR o que solo
discutieron aspectos teéricos del ML.

2) Los documentos que se utilizaron para este analisis emplearon conjuntos de datos geoespaciales, especificamente,
imagenes provenientes de satélites con capacidades interferométricas o interferogramas sintéticos. Por ejemplo, se
incluyeron documentos que utilizaron imagenes satelitales dpticas en combinacion con modelos digitales de terreno
u otros datos geoespaciales.

3) Se incluyeron documentos que se centraron en teledeteccidn, deteccidn de objetos y caracteristicas geoespaciales
a partir de imagenes satelitales, procesamiento de imagenes y clasificacion de imagenes.

4) Los documentos seleccionados eran de libre acceso.

2.2 Busqueday seleccion en la base de datos

Para identificar un grupo inicial de literatura para este estudio, se utilizd el buscador de Google a fin de garantizar
una amplia cobertura multidisciplinaria. En la literatura, los términos INSAR y DInSAR se utilizan a menudo de
manera intercambiable, aunque no son exactamente lo mismo. De cualquier manera, estas dos metodologias son
relevantes para esta revision, por lo que se optd por incluir ambos términos en la bisqueda. Por otro lado, cabe
destacar que el término ‘inteligencia geoespacial’ no solo se refiere al uso de la I A aplicada a los datos geoespaciales,
sino que en algunos contextos es empleado para describir el aprovechamiento de datos espaciales para la seguridad
nacional, tal como lo define la Agencia Nacional de Inteligencia Geoespacial (National Geospatial-Intelligence
Agency) de Estados Unidos, situada en Springfield, Virginia. Finalmente, cabe mencionar que se tuvo en cuenta
que la mayoria de las publicaciones estan en idioma inglés. Debido a esto, se utilizé como palabras clave para la
busqueda: “artificial intelligence’, ‘machine learning’, ‘deep learning’, ‘InSAR’ y ‘DINSAR’. Luego, se examinaron
los resultados con el enfoque de solo excluir libros sobre la materia, ya que los mismos son en su mayoria pagos y
suelen encarar la tematica desde el punto de vista teérico o didactico. En contrapartida, se conservaron para el
analisis, las publicaciones en estado de preprint, los resimenes y las conferencias. De los cientos de documentos
encontrados, se seleccionaron 54 que cumplian con todos los criterios de elegibilidad. Este conjunto de articulos fue
recopilado en enero de 2024.
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2.3 Revision y analisis

Después de seleccionar los articulos segln los criterios de elegibilidad presentados en la seccion anterior, se analizd
el cuerpo de literatura, seleccionando informacién clave en los documentos: titulo, autores, afio de publicacidn, el
proposito del estudio, lugar del estudio de caso, el método utilizado, datos informados, informacion de
entrenamiento-prueba y parametros. Para el mapeo de temas y métodos, se recopilé la informacion en tablas
mediante el analisis de cada documento. Si un documento no proporcionaba informacion sobre un detalle especifico,
se lo registr6 como ausente en dicha categoria. Este flujo de trabajo puede verse representado en la figura 1.
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Figura 1. Diagrama de flujo del proceso de anélisis realizado para cada una de las publicaciones estudiadas.

El andlisis cubri6 cinco perspectivas:

1) Se investig6 la distribucion espacial y temporal de los documentos. Para los analisis espaciales, se agruparon por
pais las ubicaciones de los casos de estudio.

2) Se mapearon los temas estudiados en los documentos para identificar areas de investigacion prioritarias y brechas.
Se desarrollaron cinco categorias de estudios que representan los temas mas comunes de la interferometria radar:
prevencion de catastrofes, planificacion, desenrollado de fase, identificacion de objetos y deformacion. A esta tltima
categoria se la desglosé en seis sub-categorias: interferometria de doble pasada, series temporales, correcciones
atmosféricas, deslizamientos, deformacion volcanica y deformacién tectonica.

3) Para identificar patrones en el uso de los datos se investig6 el tipo de datos que los documentos utilizaron para
desarrollar sus modelos. Se distingui6 entre datos reales y sintéticos, y entre aquellos provenientes de satélites
Opticos y de radar.
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4) Para mapear los métodos de ML mas destacados en cada categoria de estudio, se analizaron los métodos
utilizados. Se distinguieron los métodos de ML segun supervisados, no supervisados, una combinacion de no
supervisados y supervisados. No se analizo si se usaron algoritmos de procesamiento de lenguaje natural (NLP)
debido a que la informacidn derivada de datos SAR no es linglistica, sino que generalmente se generan imagenes
raster.

5) Se analiz6 la informacion de entrenamiento y los pardmetros informados a fin de estudiar como los autores
implementaron sus analisis y reportaron la informacién asociada, en aquellos casos donde se emplearon métodos
supervisados.

2.3.1 Comparacion entre distintos enfoques
Como se ha visto hasta ahora, existen tres enfoques principales en el uso de IA en InSAR:

a) Modelos supervisados: requieren grandes volimenes de datos etiquetados y han demostrado ser efectivos en la
deteccion de deformaciones. Son precisos, pero dependen en gran medida de la calidad del entrenamiento y pueden
tener dificultades para generalizar a nuevas condiciones geograficas.

b) Modelos no supervisados: son mas flexibles, ya que pueden detectar patrones ocultos sin necesidad de datos
etiquetados. Sin embargo, su interpretacién es mas compleja y su validacién mas dificil, lo que puede generar
resultados menos confiables en algunos escenarios.

¢) Modelos semi-supervisados: combinan elementos de aprendizaje supervisado y no supervisado para aprovechar
las fortalezas de ambos. Estos modelos pueden mejorar la precisién al incorporar datos no etiquetados en el
entrenamiento supervisado, pero aun estan en desarrollo y requieren mas investigacion para su implementacion
efectiva.

Un analisis comparativo sugiere que los modelos semi-supervisados poseen el mayor potencial, al combinar lo
mejor de los enfoques supervisados y no supervisados. Sin embargo, su complejidad y la necesidad de ajustes
especificos para cada caso siguen siendo limitaciones importantes. A partir de la revision bibliogréfica, se identifican
varios vacios en la literatura actual: la falta de estandarizacién en la evaluacion de modelos de aprendizaje
automatico aplicados a INSAR; la escasa exploracion de técnicas de IA en contextos con datos limitados o con alto
nivel de ruido; y la necesidad de validaciones empiricas mas sélidas que respalden los métodos propuestos en
estudios anteriores. Ademas, son pocos los trabajos que analizan el impacto de la combinacién de datos épticos y
radar en la mejora de la precision interferométrica. Finalmente, la aplicacion de modelos semi-supervisados en
escenarios geoespaciales reales contin(ia siendo incipiente, lo que abre un campo prometedor para investigaciones
futuras.

2.3.2  Profundizacion del Anélisis

En esta seccion se destacan algunos las principales dificultades de los enfoques de ML existentes. Para empezar, los
modelos hibridos destacan por combinar la robustez del aprendizaje supervisado con la flexibilidad del aprendizaje
no supervisado. Son prometedores porque pueden mejorar la deteccién de deformaciones en areas con escasos datos
clasificados. Sin embargo, los enfoques semi-supervisados también emergen como una alternativa clave, ya que
permiten la optimizacion del modelo sin depender excesivamente de datos etiquetados manualmente. Por otro lado,
la falta de datasets estandarizados y comparables que permitan evaluar objetivamente los modelos, y la dependencia
de grandes volimenes de datos etiquetados sigue siendo un obstaculo en entornos con escasez de informacién. A
su vez, los modelos de ML aplicados a INSAR aun carecen de interpretabilidad, lo que dificulta su adopcion en
entornos operativos. La variabilidad en la calidad y resolucién de los datos de radar puede afectar la precision del
ML. Adiconalmente, la fusién de datos provenientes de sensores Opticos y de radar todavia presenta dificultades en
la normalizacion y alineacion espacial. La implementacion de modelos robustos que puedan generalizarse a
diferentes regiones y condiciones geograficas sigue siendo un reto significativo.
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3 Resultados

3.1 Distribucion espacial y temporal

De todos los documentos analizados, 51 especificaban la ubicacién de la zona de estudio mientras que los 4 restantes
no la mencionaban, ya sea porque el estudio tiene un enfoque metodoldgico, o porque solo se usaron datos sintéticos.
La figura 2 muestra la distribucion de los estudios de casos por pais y a lo largo del tiempo, resaltando claramente
la discrepancia entre las regiones. La mayoria de los casos se encuentran en China, Italia y Estados Unidos, seguidos
por Iran, Etiopia y Espafia. En general, el 15% de los estudios estaban en América del Norte, el 12,5% en Europay
el 7,5% en Asia. Cinco documentos incluyen multiples casos de estudio en diferentes paises, y nueve de ellos en
diferentes continentes. Si un documento cubria varios estudios de casos, se contaba cada estudio de caso por
separado y se lo asignaba al continente respectivo. En la figura 2, las barras muestran el afio de publicacién de los
documentos. Aproximadamente el 70% de los documentos se publicaron entre 2021 y 2023, lo que indica la
creciente popularidad del campo.

Cantidad de publicaciones por pais

e O O: N+ H:-E:["J:Oy " MN:

Cantidad de publicaciones por afio

H :01: [ 2010 [0 2020 [ 20210 O 2022 [ 2023 [ 2024

Figura 2. Distribucidn espacial y temporal de las publicaciones. EI mapa muestra la distribucion de los casos de
estudio por pais y las barras muestran los afios de publicacion.

3.2 Categorias

Para derivar las categorias tematicas, se analizaron las tematicas mas relevantes en los estudios que aplican
interferometria (figura 3). Como el foco fueron los atributos espaciales, se omitieron aquellos datos vectoriales
complementarios como usos del suelo, modelos digitales del terreno, etc. Para capturar también la importancia de
los factores ambientales y sus peligros, se incluyeron dos categorias, una correspondiente a la prevencion de
catastrofes y otra a la planificacion. Se descubrié que 54 documentos estan dedicados a la deteccion de la
deformacion del terreno usando diferentes métodos, 9 documentos abordan la prevencion de catastrofes, 5 proponen
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métodos para mejorar el desenrollado de la fase SAR, 3 documentos se enfocan en la deteccion de objetos y solo 1
esta abocado a la planificacion. Dado que la categoria Deformacion concentra una cantidad significativamente
mayor de estudios y representa el nicleo tematico mas desarrollado, se decidi6 realizar un andlisis mas profundo de
sus subcategorias en la siguiente seccion. Una discusion mas detallada de los resultados obtenidos para cada
categoria se desarrolla en la seccion 4.

3.2.1 Deformacion

Se identificaron 6 subcategorias dentro de los estudios que analizan la deformacion de la superficie mediante
DINSAR (54 documentos). Estos se centran principalmente en el uso de series temporales (30 documentos) y en la
interferometria de doble pasada (10 documentos). Se observo que las correcciones atmosféricas (5 documentos), los
deslizamientos de suelo (3 documentos), la deteccidn de deformacion volcéanica (5 documentos) y la deteccion de
deformacion sismica (4 documentos) fueron teméticas abordadas en menor medida. El uso de series temporales
permitié estudiar tendencias en deslizamientos, deformacion volcanica y deslizamientos, combinando las
capacidades de analisis que brindan la 1A y el ML para mejorar la precision en la extraccion de patrones de estos
resultados interferométricos. De manera similar, la interferometria de doble pasada se utiliz6 para detectar y
caracterizar la deformacion superficial, mientras que una variedad de algoritmos de IA se aplicaron para mitigar los
efectos atmosféricos sobre las sefiales de radar.

Series temporales
(30)

Deformacion (DInSAR) _ Interferometria de doble pasada
(54) ) (10)
/ Prevencion de catastrofes Correcciones atmosféricas
// ®) ®)
S é Desenrollado de fase Deslizamientos

ematica N ) 3)

\ . Reconocimiento de objetos \ O\ Deformacion volcanica
3) (5)

\ Planificacién " Deformacion tecténica
1) “4)

Figura 3. El grafico de arbol muestra los principales temas de investigacién. Se indica el namero de documentos
por categoria entre paréntesis. Algunos documentos abarcan méas de una categoria.

3.3 Datos

Los estudios de aprendizaje automatico revelan informacion critica y oculta en conjuntos de datos. Para el analisis
sobre los datos subyacentes, se comenzo con una vision general de la frecuencia con la que se utilizaron diferentes
tipos de datos. Se distinguid entre datos reales y sintéticos, imagenes Opticas y radares. La figura 4 muestra un
histograma de los datos de entrada a lo largo de las diferentes categorias tematicas. Se enumeraron los datos
utilizados en al menos dos documentos en orden alfabético.

Los datos mas populares fueron los del satélite Sentinel-1 (60,6%), que ademas de ser usualmente utilizados para
realizar interferometria diferencial, son de libre acceso. A estos les siguen las imagenes COSMO-SkyMed (7%),
gue ademas de permitir realizar interferometria, poseen capacidad estereoscopicay se utilizaron principalmente para
analisis de series temporales y la prevencidn de catastrofes, pero también en estudios ambientales e infraestructuras
(figura 4). Como era de esperar, los datos opticos (4,2%; MSG-0, TripleSat y Landsat 8) fueron mas prominentes
en la categoria Series temporales ya que se usaron para mapear los usos del suelo, la extension de deslizamientos y
de volcanes, sirviendo como un complemento a los analisis DINSAR.
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Figura 4. Histograma de los datos e imagenes satelitales usadas para las aplicaciones de 1G en interferometria
radar. MSG-0: Meteosat Second Generation. Aqua, Terra y Aura son satélites de la NASA para la observacion del
agua, la superficie terrestre y los gases atmosféricos a nivel mundial, respectivamente.

En cuanto a la longitud de onda de las sefiales (figura 5), los radares en banda X (74,55%) se utilizaron con mayor
frecuencia para la deteccién de deformacién y, con menos frecuencia, para estudios sobre la prevencion de
catastrofes. También fueron los mas usados para el reconocimiento de objetos y los estudios sobre desenrollado de
fase. Aunqgue los datos de banda Sy L estan ganando importancia, especialmente en lo que respecta a interferometria
diferencial y prevencion de catastrofes , encontramos que dichos datos aln no se utilizan con frecuencia ya que solo
el 3,64% de los documentos los utilizaron. Finalmente, en cuanto a los datos épticos, estos fueron utilizados
principalmente para estudiar el desplazamiento del suelo como en los casos de deslizamientos.
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§60% Banda L y/o S
2 50% Bandas infrarrojas y/o ultravioletas
'.540% Bandas visibles
@ Bandas para detectar vapor de agua
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Figura 5. Tipo de datos de los sensores remotos por tema. El histograma muestra el porcentaje de publicaciones
que usaron imagenes en bandas C, X, L y/o S, infrarrojas y/o ultravioletas, visibles y para detectar vapor de agua
y/o humedad, divido por categoria.
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3.4 Métodos de IAy ML

En esta seccion se analizan los métodos usados por temética. Se agruparon las investigaciones en tres categorias: 1)
supervisadas, 2) no supervisadas y 3) una combinacién de métodos no supervisados y supervisados. La figura 6
muestra la distribucion de los métodos por categoria. Se calculo la proporcion sobre el nimero total de métodos. En
este calculo se omitio el trabajo de [40] por ser considerados como un valor atipico del recuento, ya que los autores
no utilizaron algoritmos de ML sino que se abocaron a realizar una revision de todos los métodos conocidos para
realizar InSAR (dentro de los cuales estudiaron algoritmos de ML).

70%

Supervisado
60% No supervisado
< 50% Combinado
240%
E
£ 30%
3
B 20%
10% I
0% - i . — - -
Deformacion Prevencion Desenrollado Reconocimiento Planificacion
(DInSAR) de catastrofes de fase de objetos
Categoria

Figura 6. Distribucién de los métodos de ML por categoria. El histograma muestra el porcentaje de articulos que
utilizaron algoritmos supervisados, no supervisados o una combinacion de ellos, por categoria.

En cuanto a los métodos de ML, se identificé una preeminencia de métodos supervisados, particularmente en
estudios que utilizaron series temporales DINSAR para la prediccion y deteccion de cambios en fenémenos
geologicos, como deslizamientos de tierra, deformaciones del terreno y deformacion volcanica. Esta tendencia se
debe a que los métodos supervisados estan disefiados para resolver tareas concretas y, para lograrlo, necesitan
ejemplos etiquetados que les permitan aprender a reconocer patrones similares en nuevos datos. Los métodos no
supervisados se aplicaron principalmente en temas de monitoreo mediante series temporales, ya sea de estructuras
como puentes, fallas tecténicas o subsidencia. Esto se debe a que estos algoritmos tienen una mayor utilidad cuando
se trabaja con grandes volimenes de datos no clasificados. [62] y [68] utilizaron una combinacién de métodos no
supervisados y supervisados para la deteccion de deformacion tecténica y volcanica.

Debido a su prominencia, se proporciona un analisis mas detallado de los algoritmos empleados con mayor
frecuencia para el aprendizaje supervisado y no supervisado. La figura 7 muestra la cantidad de veces que los
documentos utilizaron algoritmos supervisados. A pesar de la amplia gama de algoritmos, los documentos tienden
a utilizar principalmente unos pocos: las redes neuronales convolucionales (CNN), las redes neuronales de memoria
a corto y largo plazo (LSTM), las maquinas de soporte vectorial (SVM), los bosque aleatorio (RF), los perceptrones
de capas multiples (MLP), las redes neuronales convolucionales profundas (D-CNN) y el aprendizaje profundo
(DL). Con respecto a las LSTM, se debe tener en cuenta que estas son un tipo especializado de RNN disefiadas para
abordar el problema de las dependencias a largo plazo. Introducidas por Hochreiter y Schmidhuber en 1997, las
LSTM utilizan una estructura interna mas compleja que le permite a la red aprender y recordar dependencias a largo
plazo en los datos de entrada. Esto se logra a través de puertas de olvido, entrada y de salida que controlan el flujo
de informacion dentro de la memoria de la red.

Los estudios que adoptaron solo algoritmos de aprendizaje no supervisado (figura 8) utilizaron principalmente auto-
codificadores profundos (DCA) para la seleccién de datos y k-medias (k-means clustering) para fines de agrupacion.
También se usaron redes neuronales convoluciones no supervisadas (Canet). Ademas, se analiz6 la relacion entre
los temas y los métodos (tabla 1).
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Figura 7. Histograma de las aplicaciones de los algoritmos de machine learning supervisados.
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Figura 8. Histograma de las aplicaciones de los algoritmos de machine learning no supervisados.
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Tabla 1. Algoritmos de ML usados en interferometria radar. Para cada tema, mostramos el algoritmo usado en el
analisis. Se ha colocado entre paréntesis el nimero de publicaciones para algoritmos con mas de una aplicacion en
el mismo tema. Si una publicacién usa mas de un método, se agrupan en el mismo tema. Abreviaciones: AG:
algoritmos genéticos, BRT: arboles de regresion impulsados, CA: anélisis de clister, Cadet: redes neuronales no
supervisadas, CART: arbol de clasificacion y regresion, CNN: red neuronal convolucional, D-CNN: redes
neuronales convolucionales profundas, DANNS: redes neuronales artificiales dindmicas, DL: aprendizaje
profundo, DLT: transformadores en el aprendizaje profundo, FCNN: redes neuronales completamente conectadas,
GAN: redes generativas adversariales, GBM: modelo de impulso generalizado, GRU: redes neuronales
recurrentes bidireccionales con unidades recurrentes gateadas, LSTM: redes neuronales de memoria a corto y
largo plazo, MAP: maxima a posteriori, Mask R-CNN: redes neuronales convolucionales basadas en regiones con
maéscaras, MaxEnt: mé&xima entropia, MB: enfoque basado en modelo, MLP: perceptrones de capas multiples,
MV: méaxima verosimilitud, RF: Bosque aleatorio, RNA: redes neuronales artificiales, RNC: redes neuronales
conmutadas, RNN: red neuronal recurrente, SVM: maquinas de soporte vectorial, TL: aprendizaje de
transferencia, UMAP: aproximacion y proyeccion uniforme de variedades, XGB: refuerzo extremo de gradiente o
XGBoost.

Tipo de método Tema de estudio Algoritmos

MLP (2), RNA, AG, BRT (2), XGB (2), RNN (5), CNN (8), SLTM (2), MB, Mask R CNN, D-CNN (2), Seq2Seq, GRUD

series temporales Auto-codificador convolucional, CART, RF (3), SVM (4). WOA, GWO,LSTM. DL, DANNs, GRU, DLT, ARIMA/MLEP,
Supervisado 1D-CNN, BILSTM
interferometria de doble pasada CNN (9), SVM, DL, GRU
correcciones atmosféricas CNN (2), RF, FCNN, MLP, SVM
deslizamientos U-Net, DeepLab v3+, PSPNet, YOLOv3, Mask R-CNN
deformacién volcdnica CNN (5). FCN, D-CNN, Canet
deformacién tectonica RNA, AG. CNN (4), ECN, D-CNN, Canet
prevencion de catastrofes RNN, auto-codificador convolucional, ANN, GBM, MaxEnt, U-Net, DeepLab v3+, PSPNet, CNN (3), SVM, GRU
desenrollado de fase GAN. MV, MAP. CA, CNN (2), SVM, DL, GRU
teconocimiento de objetos CNN, SVM, D-CNN
planificacién CART, RF, SVM (2), BRT, CNN
No supervisado series temporales UMAP. LSTM. auto-codificador profundo
nterferometria de doble pasada
correcciones atmosféricas GAN
deslizamientos
deformacion volcanica
deformacion tectonica
prevencion de catastrofes K-means
desenrollado de fase
teconocimiento de objetos CFAR. auto-codificador profundo
planificacién
Combinado series temporales RNN,MLP

nterferometria de doble pasada
correcciones atmosféricas
deslizamientos

deformacién volcanica
deformacion tectdnica
prevencion de catastrofes
desenrollado de fase
teconocimiento de objetos
planificacion

3.5 Patrones en la seleccion de parametros

En esta seccidn, se analizaron patrones en la seleccion de los pardmetros, tanto en ML supervisado como no
supervisado. En el aprendizaje supervisado, se investig6 la informacién reportada sobre el entrenamiento y las
pruebas. Aunque la eleccion de los parametros tiene un impacto importante en los resultados, se encontré que a
menudo los autores no detallan adecuadamente el proceso de seleccion de parametros de entrenamiento y de prueba.
De los que si lo hicieron, la mayoria dividié los datos en dos conjuntos: el conjunto de datos de entrenamiento (que
comprendia generalmente entre el 70% y el 80% de los datos), y el conjunto de datos para las pruebas (entre el 20%
y el 30% del total de los datos). Algunas de las publicaciones en las que se realizaron analisis temporales optaron
por dividir los datos de entrenamiento y pruebas por afio (por ejemplo [1] y [29]). Otros autores utilizaron tres
conjuntos de datos: uno para la capacitacién, otro para la validacion y otro para las pruebas [20], [32] y [50]. Pocos
articulos informaron sistematicamente sobre la seleccidn de los hiperpardmetros, y hasta el momento no existe un
estandar comudn. Por ejemplo, ningln autor usé vifietas para enumerar los hiperpardmetros de los diferentes




Intelética 3 (2025) 72

algoritmos. [5], [10], [25], [36], [39], [41] y [64] emplearon tablas para informar sobre los hiperparametros y sobre
la arquitectura de NN. Sin embargo, la gran mayoria de los articulos no lo hicieron ni dieron detalles sobre la
arquitectura del modelo. Aquellos autores que si especificaron los hiperparametros, lo hicieron principalmente en
el cuerpo del texto en lugar de hacerlo en un forma detallada y sistematica a través de tablas o figuras, lo que dificulta
la lectura de la informacion. Este hallazgo estaba en linea con criticas anteriores sobre la falta de informacion clara
de los hiperparametros en redes neuronales artificiales [31].

Con respecto a los trabajos que emplearon ML no supervisado, se analizd como se desarrollaron tanto la agrupacion
como el anélisis de componentes principales (PCA). Para los algoritmos de agrupamiento, se distinguieron dos
enfoques: (i) determinar el nimero éptimo de conglomerados mediante el uso de algoritmos sistematicos, (ii)
determinar manualmente el ndmero de conglomerados y luego que el algoritmo asigne los datos a cada
conglomerado. Dentro de la primera categoria (i), [25] y [68] seleccionaron el nimero 6ptimo de grupos utilizando
el coeficiente de particién y la entropia de clasificacion. Varios autores, [14], [64] y [65], emplearon clusterogramas
para identificar grupos de k-medias. Este método consiste en trazar una serie de valores potenciales de k. En estos
casos, el numero dptimo de grupos de k-medias se evaluo utilizando el coeficiente de silueta desarrollado por [63].
En la segunda categoria (ii), [68] seleccion6 el nimero de grupos basandose en evaluaciones empiricas de los casos
de estudio .

En relacion con el analisis de componentes principales (PCA), esta técnica fue utilizada para facilitar la
interpretacion de los datos y optimizar el rendimiento de los modelos. Los estudios [14], [64] y [65] aplicaron el
PCA como paso previo al agrupamiento, permitiendo identificar las variables que explicaban la mayor parte de la
varianza en los conjuntos de datos. En todos estos casos, se utilizo el criterio de Kaiser, que es una regla empirica
gue ayuda a decidir cuantos componentes retener.

Este andlisis pone de manifiesto la necesidad de avanzar hacia criterios mas sistematicos y claramente documentados
en la seleccion de parametros en modelos ML aplicados a InSAR, lo cual resultaria clave para mejorar la
reproducibilidad de los experimentos y facilitar comparaciones entre estudios.

4 Conclusiones

En este trabajo se propuso revisar el estado del arte de la IG aplicada a la INSAR. Como este es un campo del saber
emergente y en rapido desarrollo, se llevo a cabo una revision exploratoria para (i) mapear los temas mas destacados,
fuentes de datos, algoritmos de aprendizaje automatico y enfoques para la seleccion de parametros, (ii) determinar
los desafios en la aplicacion del aprendizaje automatico en INSAR, (iii) identificar vacios de conocimiento para
orientar a las futuras investigaciones. Se revisaron trabajos que abarcan diferentes algoritmos de ML en todos los
aspectos de los procesamientos interferométricos, divididos en las categorias de métodos supervisados y no
supervisados. El analisis de los documentos permitid crear una clasificacion de enfoques de aprendizaje automatico
segln temas, métodos y fuentes de datos.

Se destacan tres conclusiones principales de este estudio. En primer lugar, mencionar que todavia hay amplias
oportunidades para evolucionar en este campo del saber, investigando temas faltantes o trabajando en estudios de
casos interdisciplinarios o comparativos. A medida que el aprendizaje automatico y la IA se hacen més populares,
sus aplicaciones permitirdn resolver problemas en cuestiones relacionadas con las ciencias de la Tierra, como la
prevencidn de catéastrofes y la mitigacién de dafios. Segundo, aln existe la necesidad de estandarizar la seleccion de
datos, algoritmos y pardmetros, ya que las comparaciones sistematicas de la seleccién de datos y algoritmos pueden
ayudar a explorar la importancia de estos métodos y los impactos de los resultados, aumentando la reproducibilidad
y transparencia de los trabajos. Tercero, el aprendizaje automatico espacial se beneficiara de una integracién de los
distintos tipos de datos, permitiendo procesos de analisis mas significativos.

Mediante este trabajo, se pretende que la comunidad cientifica pueda utilizar esta revisién como una guia para
comprender qué enfoques y conjuntos de datos se han utilizado para abordar qué tipos de problemas, y que el analisis
presentado ayude a comprender de manera integral el uso de la IG aplicada a los datos geoespaciales. También, se
identificaron algunas areas prometedoras para incursionar en investigaciones futuras, desde la necesidad de méas
estudios comparativos hasta una mejor comprension del impacto de la seleccién de conjuntos de datos, algoritmos
0 parametros. En este estudio, se hizo hincapié en la necesidad de fomentar enfoques de aprendizaje automatico méas
facilmente explicables e invertir en la transferencia de conocimientos para ayudar a difundir estas herramientas que
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mejoran la calidad de los analisis espaciales, a fin de permitirle a los equipos de investigadores abordar mejor los
numerosos desafios a los que se enfrentan.

Los resultados de este trabajo subrayan que, si bien los modelos supervisados han sido ampliamente utilizados, los
modelos hibridos emergen como una solucion prometedora que combina lo mejor de ambos enfoques para mejorar
la precision en la deteccion de deformaciones en INSAR. Nuestro analisis revela que la integracidn de aprendizaje
automatico con técnicas INSAR no solo incrementa la precision de las detecciones, sino que también abre nuevas
oportunidades para el monitoreo geoespacial en regiones con escasez de datos clasificados. Se recomienda explorar
maés a fondo el uso de estos modelos hibridos y auto-supervisados, asi como el desarrollo de criterios estandarizados
para evaluar la efectividad de estos enfoques. Esto podria allanar el camino hacia mejores aplicaciones de la
inteligencia geoespacial.
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