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Abstract Synthetic Aperture Radar Interferometry (InSAR) is a widely used technique in various sciences such as 
remote sensing, geodesy, seismology, volcanology, among others, with highly diverse applications. Some of these 
include estimating surface subsidence or uplift, post-seismic deformation, and creating digital elevation models. In 
the modern digital era, Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing many fields of 
knowledge, with a wide range of uses, from urban planning to the optimization of productive tasks. Broadly 
speaking, geospatial intelligence (GI) refers to the utilization of AI in the field of geospatial data. In this context, 
and given the vast number of areas covered by GI, this study focuses on the application of GI in the field of InSAR. 
To this end, a comprehensive review of the current state of the art was conducted, analyzing both supervised and 
unsupervised ML techniques tested on real and synthetic datasets. The aim is to contribute to understanding the 
current possibilities and limitations of AI-assisted interferometric processing. The study presents cases in urban and 
rural environments, identifying the most common themes in the use of GI in InSAR, the ML methods employed, 
and the conclusions drawn. It can be anticipated that, in general, the authors studied preferred supervised ML 
methods over unsupervised ones, with most of these studies being concentrated in Asia. Finally, it is worth noting 
that among all the currently available satellite images, those from the Sentinel-1 satellite were the most preferred 
for conducting these investigations. 

Resumen La interferometría de radar de apertura sintética (por sus siglas en inglés InSAR) es una técnica 
ampliamente utilizada en muchas ciencias tales como la percepción remota, la geodesia, la sismología, la 
vulcanología, entre otras, con aplicaciones muy variadas. Algunas de ellas son: la estimación de la subsidencia o el 
levantamiento de la superficie, la deformación postsísmica o la creación de modelos digitales de terreno. En la era 
digital moderna, la inteligencia artificial (IA) y el machine learning (ML) están revolucionando muchísimos campos 
del saber, con variados usos, desde la planificación urbana hasta la optimización de tareas productivas. En términos 
generales, se entiende por inteligencia geoespacial (IG) al aprovechamiento de la IA en el campo de los datos 
geoespaciales. En este sentido, y debido a la enorme cantidad de áreas del conocimiento que abarca la IG, para este 
trabajo se ha acotado el análisis a la aplicación de la IG en el campo de la InSAR. Para esto se realizó una revisión 
exhaustiva del estado del arte actual, analizando tanto técnicas supervisadas como no supervisadas de ML, probadas 
sobre conjuntos de datos reales y sintéticos. Con esto se pretende realizar una contribución acerca de las 
posibilidades y limitaciones actuales del procesamiento interferométrico asistido por IA. Se presentan casos en 
ámbitos urbanos y rurales, identificando los temas más comunes de la utilización de la IG en InSAR, los métodos 
de ML empleados y las conclusiones a las que se arribó. Se puede adelantar que, en general, los autores estudiados 
prefirieron los métodos de ML supervisados por sobre los no supervisados, ubicándose la mayoría de
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estos trabajos en oriente. Finalmente destacar que, de todas las imágenes disponibles actualmente, fueron las del 
satélite Sentinel-1 las preferidas para llevar adelante estas investigaciones. 
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Learning, Revisión. 
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1 Introducción 
El avance de la inteligencia artificial (IA) ha revolucionado múltiples áreas del conocimiento debido a su capacidad 
para procesar, analizar y extraer información valiosa a partir de una vasta cantidad de datos geoespaciales, marcando 
un hito en cómo entendemos y aprovechamos nuestro entorno. Su uso ha mejorado notablemente la precisión de los 
análisis espaciales y ha desencadenado innovaciones sin precedentes en la toma de decisiones estratégicas y en la 
comprensión de complejas interrelaciones entre los elementos geográficos, dando origen a la creación de un nuevo 
campo del saber: la inteligencia geoespacial (IG). Este campo del conocimiento se centra en la recopilación, análisis 
y visualización de datos geográficos para obtener información significativa sobre el mundo que nos rodea. Esta 
disciplina tiene aplicaciones en una amplia gama de campos gracias a su capacidad para potenciar la detección de 
patrones y tendencias en un conjunto de datos espaciales. En particular, la interferometría SAR o InSAR es una 
técnica utilizada para la generación de modelos digitales de terreno y el monitoreo de deformaciones de la superficie 
a partir de imágenes de satélite radar [26] y [33]. La Interferometría Diferencial (por sus siglas en inglés DInSAR) 
explota la fase del SAR que es sensible a los cambios de elevación ocurridos sobre la superficie del terreno entre 
distintas imágenes obtenidas por un satélite sobre una misma zona [19], [44] y [45]. Si la topografía del terreno es 
conocida, es decir si se dispone de un modelo digital de terreno, la correspondiente componente de fase puede ser 
sustraída de la fase InSAR, dejando la componente relacionada con la deformación del terreno; esto hace posible la 
detección de pequeñas deformaciones de la superficie terrestre con una precisión del orden de centímetros. 

DInSAR, que en forma creciente se aplica al estudio de las deformaciones cosísmicas y post sísmicas [12] y [45], 
compara la información de fase de dos imágenes SAR tomadas en el área epicentral de un sismo, una antes y otra 
después del evento. La diferencia de fases resultante origina un nuevo tipo de imagen denominada interferograma. 
De producirse la deformación del terreno, el interferograma muestra un modelo de interferencia formado por franjas 
(fringes) que contienen toda la información sobre la geometría relativa entre las dos imágenes [30]. Cada franja 
indica un cambio de la distancia suelo-satélite de 28 mm. Esta gran precisión permite el estudio de las deformaciones 
originadas por terremotos de magnitudes moderadas (M ~4 a 5) que de otro modo resultan imperceptibles en los 
estudios de terreno. Esta técnica ha sido utilizada en Argentina para conocer la dinámica de los glaciares, terremotos, 
volcanes, deslizamientos y subsidencias asociadas a la explotación de acuíferos así como para actividades mineras 
y petroleras, entre otros [21], [23], [37] y [38]. También se ha utilizado para medir la deformación del terreno 
vinculada a sismos de moderada a alta magnitud como los de Sichuan, en China en 2008 (MW 7,9) [69], L'Aquila, 
Italia en 2009 [74], para caracterizar procesos de deformación volcánica y movimiento de glaciares [73] y [24], 
entre otros ejemplos. Por otro lado, [22] han utilizado técnicas de InSAR para el cálculo de rumbo y buzamiento de 
estructuras no aflorantes. 

La recopilación de publicaciones estudiadas para este trabajo abarca diversas aplicaciones de IA y el ML en el 
campo de la InSAR y las geociencias. Se han revisado una amplia variedad de publicaciones, desde guías paso a 
paso para el procesamiento de imágenes Sentinel-1 usando ML hasta enfoques innovadores en los que se explora el 
uso de redes generativas adversariales (GAN) para el desenrollado de fase a fin de mejorar la precisión de resultados 
de la interferometría diferencial de radar de apertura sintética, con el fin de brindar una revisión detallada del estado 
del arte de la aplicación de la IG en los procesamientos interferométricos. 

La aplicación de técnicas de aprendizaje automático (ML) a la interferometría radar (InSAR) ha demostrado ser un 
campo emergente con el potencial de mejorar significativamente la precisión en la detección de deformaciones 
geológicas. Este estudio revisa y compara enfoques que abordan esta problemática, proporcionando una visión 
integral sobre el estado del arte. El análisis de los enfoques híbridos, que combinan aprendizaje supervisado y no 
supervisado, revela su potencial para superar las limitaciones de los métodos tradicionales en la identificación de 
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patrones en datos geoespaciales. A través de este trabajo, se expone cómo estos métodos podrían mejorar el 
rendimiento en escenarios con datos limitados. Y si bien se han logrado avances, persisten importantes vacíos en la 
literatura, particularmente en lo que respecta a la estandarización de evaluaciones de modelos y la integración 
efectiva de datos multi-sensor. Por eso, este trabajo no solo identifica estos vacíos, sino que también propone nuevas 
líneas de investigación que podrían cambiar el rumbo del campo. 

2 Materiales y métodos 
Esta sección describe el procedimiento y los métodos que se han seguido para elaborar esta revisión, y dado que el 
objetivo es estudiar el uso de la IG en el ámbito de la InSAR y sus numerosas aplicaciones, se optó por realizar una 
revisión de alcance. Ésta última metodología se ha desarrollado para brindar un mapeo de los dominios de estudio, 
fuentes de datos, enfoques y métodos [54]. Si bien las revisiones de alcance son relativamente nuevas en 
comparación con las revisiones sistemáticas, se han establecido como una herramienta ideal para determinar la 
extensión de un cuerpo de literatura emergente y proporcionar una visión general de su enfoque [49]. En este caso, 
una revisión de alcance es adecuada porque el número de publicaciones sobre las aplicaciones de IG para InSAR ha 
crecido rápidamente en los últimos años y, por lo tanto, es imposible llevar a cabo una revisión sistemática rigurosa 
sin excluir aspectos del campo. 

2.1 Planificación de la revisión de alcance: Criterio de elegibilidad 
La IG y la InSAR son campos muy amplios. Por esta razón, se decidió utilizar los siguientes criterios para 
seleccionar los documentos relevantes para el análisis sobre las aplicaciones de la IG en el procesamiento de 
imágenes de radar de apertura sintética (SAR): 

1) Los documentos seleccionados emplearon principalmente algoritmos de IA o ML para mejorar la eficiencia de 
los procesamientos interferométricos o disminuir sus limitaciones. Se incluyeron métodos de ML supervisados y no 
supervisados. Por otro lado, se excluyeron aquellas publicaciones que utilizaron polarimetría SAR o que solo 
discutieron aspectos teóricos del ML. 

2) Los documentos que se utilizaron para este análisis emplearon conjuntos de datos geoespaciales, específicamente, 
imágenes provenientes de satélites con capacidades interferométricas o interferogramas sintéticos. Por ejemplo, se 
incluyeron documentos que utilizaron imágenes satelitales ópticas en combinación con modelos digitales de terreno 
u otros datos geoespaciales. 

3) Se incluyeron documentos que se centraron en teledetección, detección de objetos y características geoespaciales 
a partir de imágenes satelitales, procesamiento de imágenes y clasificación de imágenes. 

4) Los documentos seleccionados eran de libre acceso. 

2.2 Búsqueda y selección en la base de datos 
Para identificar un grupo inicial de literatura para este estudio, se utilizó el buscador de Google a fin de garantizar 
una amplia cobertura multidisciplinaria. En la literatura, los términos InSAR y DInSAR se utilizan a menudo de 
manera intercambiable, aunque no son exactamente lo mismo. De cualquier manera, estas dos metodologías son 
relevantes para esta revisión, por lo que se optó por incluir ambos términos en la búsqueda. Por otro lado, cabe 
destacar que el término ‘inteligencia geoespacial’ no solo se refiere al uso de la IA aplicada a los datos geoespaciales, 
sino que en algunos contextos es empleado para describir el aprovechamiento de datos espaciales para la seguridad 
nacional, tal como lo define la Agencia Nacional de Inteligencia Geoespacial (National Geospatial-Intelligence 
Agency) de Estados Unidos, situada en Springfield, Virginia. Finalmente, cabe mencionar que se tuvo en cuenta 
que la mayoría de las publicaciones están en idioma inglés. Debido a esto, se utilizó como palabras clave para la 
búsqueda: ‘artificial intelligence’, ‘machine learning’, ‘deep learning’, ‘InSAR’ y ‘DInSAR’. Luego, se examinaron 
los resultados con el enfoque de solo excluir libros sobre la materia, ya que los mismos son en su mayoría pagos y 
suelen encarar la temática desde el punto de vista teórico o didáctico. En contrapartida, se conservaron para el 
análisis, las publicaciones en estado de preprint, los resúmenes y las conferencias. De los cientos de documentos 
encontrados, se seleccionaron 54 que cumplían con todos los criterios de elegibilidad. Este conjunto de artículos fue 
recopilado en enero de 2024. 
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2.3 Revisión y análisis 
Después de seleccionar los artículos según los criterios de elegibilidad presentados en la sección anterior, se analizó 
el cuerpo de literatura, seleccionando información clave en los documentos: título, autores, año de publicación, el 
propósito del estudio, lugar del estudio de caso, el método utilizado, datos informados, información de 
entrenamiento-prueba y parámetros. Para el mapeo de temas y métodos, se recopiló la información en tablas 
mediante el análisis de cada documento. Si un documento no proporcionaba información sobre un detalle específico, 
se lo registró como ausente en dicha categoría. Este flujo de trabajo puede verse representado en la figura 1. 

 
Figura 1. Diagrama de flujo del proceso de análisis realizado para cada una de las publicaciones estudiadas. 

El análisis cubrió cinco perspectivas: 

1) Se investigó la distribución espacial y temporal de los documentos. Para los análisis espaciales, se agruparon por 
país las ubicaciones de los casos de estudio. 

2) Se mapearon los temas estudiados en los documentos para identificar áreas de investigación prioritarias y brechas. 
Se desarrollaron cinco categorías de estudios que representan los temas más comunes de la interferometría radar: 
prevención de catástrofes, planificación, desenrollado de fase, identificación de objetos y deformación. A esta última 
categoría se la desglosó en seis sub-categorías: interferometría de doble pasada, series temporales, correcciones 
atmosféricas, deslizamientos, deformación volcánica y deformación tectónica. 

3) Para identificar patrones en el uso de los datos se investigó el tipo de datos que los documentos utilizaron para 
desarrollar sus modelos. Se distinguió entre datos reales y sintéticos, y entre aquellos provenientes de satélites 
ópticos y de radar. 
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4) Para mapear los métodos de ML más destacados en cada categoría de estudio, se analizaron los métodos 
utilizados. Se distinguieron los métodos de ML según supervisados, no supervisados, una combinación de no 
supervisados y supervisados. No se analizó si se usaron algoritmos de procesamiento de lenguaje natural (NLP) 
debido a que la información derivada de datos SAR no es lingüística, sino que generalmente se generan imágenes 
raster. 

5) Se analizó la información de entrenamiento y los parámetros informados a fin de estudiar cómo los autores 
implementaron sus análisis y reportaron la información asociada, en aquellos casos donde se emplearon métodos 
supervisados. 

2.3.1 Comparación entre distintos enfoques 

Como se ha visto hasta ahora, existen tres enfoques principales en el uso de IA en InSAR: 

a) Modelos supervisados: requieren grandes volúmenes de datos etiquetados y han demostrado ser efectivos en la 
detección de deformaciones. Son precisos, pero dependen en gran medida de la calidad del entrenamiento y pueden 
tener dificultades para generalizar a nuevas condiciones geográficas. 

b) Modelos no supervisados: son más flexibles, ya que pueden detectar patrones ocultos sin necesidad de datos 
etiquetados. Sin embargo, su interpretación es más compleja y su validación más difícil, lo que puede generar 
resultados menos confiables en algunos escenarios. 

c) Modelos semi-supervisados: combinan elementos de aprendizaje supervisado y no supervisado para aprovechar 
las fortalezas de ambos. Estos modelos pueden mejorar la precisión al incorporar datos no etiquetados en el 
entrenamiento supervisado, pero aún están en desarrollo y requieren más investigación para su implementación 
efectiva. 

Un análisis comparativo sugiere que los modelos semi-supervisados poseen el mayor potencial, al combinar lo 
mejor de los enfoques supervisados y no supervisados. Sin embargo, su complejidad y la necesidad de ajustes 
específicos para cada caso siguen siendo limitaciones importantes. A partir de la revisión bibliográfica, se identifican 
varios vacíos en la literatura actual: la falta de estandarización en la evaluación de modelos de aprendizaje 
automático aplicados a InSAR; la escasa exploración de técnicas de IA en contextos con datos limitados o con alto 
nivel de ruido; y la necesidad de validaciones empíricas más sólidas que respalden los métodos propuestos en 
estudios anteriores. Además, son pocos los trabajos que analizan el impacto de la combinación de datos ópticos y 
radar en la mejora de la precisión interferométrica. Finalmente, la aplicación de modelos semi-supervisados en 
escenarios geoespaciales reales continúa siendo incipiente, lo que abre un campo prometedor para investigaciones 
futuras. 

2.3.2 Profundización del Análisis 

En esta sección se destacan algunos las principales dificultades de los enfoques de ML existentes. Para empezar, los 
modelos híbridos destacan por combinar la robustez del aprendizaje supervisado con la flexibilidad del aprendizaje 
no supervisado. Son prometedores porque pueden mejorar la detección de deformaciones en áreas con escasos datos 
clasificados. Sin embargo, los enfoques semi-supervisados también emergen como una alternativa clave, ya que 
permiten la optimización del modelo sin depender excesivamente de datos etiquetados manualmente. Por otro lado, 
la falta de datasets estandarizados y comparables que permitan evaluar objetivamente los modelos, y la dependencia 
de grandes volúmenes de datos etiquetados sigue siendo un obstáculo en entornos con escasez de información. A 
su vez, los modelos de ML aplicados a InSAR aún carecen de interpretabilidad, lo que dificulta su adopción en 
entornos operativos. La variabilidad en la calidad y resolución de los datos de radar puede afectar la precisión del 
ML. Adiconalmente, la fusión de datos provenientes de sensores ópticos y de radar todavía presenta dificultades en 
la normalización y alineación espacial. La implementación de modelos robustos que puedan generalizarse a 
diferentes regiones y condiciones geográficas sigue siendo un reto significativo. 
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3 Resultados 

3.1 Distribución espacial y temporal 
De todos los documentos analizados, 51 especificaban la ubicación de la zona de estudio mientras que los 4 restantes 
no la mencionaban, ya sea porque el estudio tiene un enfoque metodológico, o porque solo se usaron datos sintéticos. 
La figura 2 muestra la distribución de los estudios de casos por país y a lo largo del tiempo, resaltando claramente 
la discrepancia entre las regiones. La mayoría de los casos se encuentran en China, Italia y Estados Unidos, seguidos 
por Irán, Etiopía y España. En general, el 15% de los estudios estaban en América del Norte, el 12,5% en Europa y 
el 7,5% en Asia. Cinco documentos incluyen múltiples casos de estudio en diferentes países, y nueve de ellos en 
diferentes continentes. Si un documento cubría varios estudios de casos, se contaba cada estudio de caso por 
separado y se lo asignaba al continente respectivo. En la figura 2, las barras muestran el año de publicación de los 
documentos. Aproximadamente el 70% de los documentos se publicaron entre 2021 y 2023, lo que indica la 
creciente popularidad del campo. 

 
Figura 2. Distribución espacial y temporal de las publicaciones. El mapa muestra la distribución de los casos de 

estudio por país y las barras muestran los años de publicación. 

3.2 Categorías 
Para derivar las categorías temáticas, se analizaron las temáticas más relevantes en los estudios que aplican 
interferometría (figura 3). Como el foco fueron los atributos espaciales, se omitieron aquellos datos vectoriales 
complementarios como usos del suelo, modelos digitales del terreno, etc. Para capturar también la importancia de 
los factores ambientales y sus peligros, se incluyeron dos categorías, una correspondiente a la prevención de 
catástrofes y otra a la planificación. Se descubrió que 54 documentos están dedicados a la detección de la 
deformación del terreno usando diferentes métodos, 9 documentos abordan la prevención de catástrofes, 5 proponen 
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métodos para mejorar el desenrollado de la fase SAR, 3 documentos se enfocan en la detección de objetos y solo 1 
está abocado a la planificación. Dado que la categoría Deformación concentra una cantidad significativamente 
mayor de estudios y representa el núcleo temático más desarrollado, se decidió realizar un análisis más profundo de 
sus subcategorías en la siguiente sección. Una discusión más detallada de los resultados obtenidos para cada 
categoría se desarrolla en la sección 4. 

3.2.1 Deformación 

Se identificaron 6 subcategorías dentro de los estudios que analizan la deformación de la superficie mediante 
DInSAR (54 documentos). Estos se centran principalmente en el uso de series temporales (30 documentos) y en la 
interferometría de doble pasada (10 documentos). Se observó que las correcciones atmosféricas (5 documentos), los 
deslizamientos de suelo (3 documentos), la detección de deformación volcánica (5 documentos) y la detección de 
deformación sísmica (4 documentos) fueron temáticas abordadas en menor medida. El uso de series temporales 
permitió estudiar tendencias en deslizamientos, deformación volcánica y deslizamientos, combinando las 
capacidades de análisis que brindan la IA y el ML para mejorar la precisión en la extracción de patrones de estos 
resultados interferométricos. De manera similar, la interferometría de doble pasada se utilizó para detectar y 
caracterizar la deformación superficial, mientras que una variedad de algoritmos de IA se aplicaron para mitigar los 
efectos atmosféricos sobre las señales de radar. 

 
Figura 3. El gráfico de árbol muestra los principales temas de investigación. Se indica el número de documentos 

por categoría entre paréntesis. Algunos documentos abarcan más de una categoría. 

3.3 Datos 
Los estudios de aprendizaje automático revelan información crítica y oculta en conjuntos de datos. Para el análisis 
sobre los datos subyacentes, se comenzó con una visión general de la frecuencia con la que se utilizaron diferentes 
tipos de datos. Se distinguió entre datos reales y sintéticos, imágenes ópticas y radares. La figura 4 muestra un 
histograma de los datos de entrada a lo largo de las diferentes categorías temáticas. Se enumeraron los datos 
utilizados en al menos dos documentos en orden alfabético. 

Los datos más populares fueron los del satélite Sentinel-1 (60,6%), que además de ser usualmente utilizados para 
realizar interferometría diferencial, son de libre acceso. A estos les siguen las imágenes COSMO-SkyMed (7%), 
que además de permitir realizar interferometría, poseen capacidad estereoscópica y se utilizaron principalmente para 
análisis de series temporales y la prevención de catástrofes, pero también en estudios ambientales e infraestructuras 
(figura 4). Como era de esperar, los datos ópticos (4,2%; MSG-0, TripleSat y Landsat 8) fueron más prominentes 
en la categoría Series temporales ya que se usaron para mapear los usos del suelo, la extensión de deslizamientos y 
de volcanes, sirviendo como un complemento a los análisis DInSAR. 
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Figura 4. Histograma de los datos e imágenes satelitales usadas para las aplicaciones de IG en interferometría 

radar. MSG-0: Meteosat Second Generation. Aqua, Terra y Aura son satélites de la NASA para la observación del 
agua, la superficie terrestre y los gases atmosféricos a nivel mundial, respectivamente. 

En cuanto a la longitud de onda de las señales (figura 5), los radares en banda X (74,55%) se utilizaron con mayor 
frecuencia para la detección de deformación y, con menos frecuencia, para estudios sobre la prevención de 
catástrofes. También fueron los más usados para el reconocimiento de objetos y los estudios sobre desenrollado de 
fase. Aunque los datos de  banda S y L están ganando importancia, especialmente en lo que respecta a interferometría 
diferencial y prevención de catástrofes , encontramos que dichos datos aún no se utilizan con frecuencia ya que solo 
el 3,64% de los documentos los utilizaron. Finalmente, en cuanto a los datos ópticos, estos fueron utilizados 
principalmente para estudiar el desplazamiento del suelo como en los casos de deslizamientos. 

 
Figura 5. Tipo de datos de los sensores remotos por tema. El histograma muestra el porcentaje de publicaciones 
que usaron imágenes en bandas C, X, L y/o S, infrarrojas y/o ultravioletas, visibles y para detectar vapor de agua 

y/o humedad, divido por categoría. 
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3.4 Métodos de IA y ML 
En esta sección se analizan los métodos usados por temática. Se agruparon las investigaciones en tres categorías: 1) 
supervisadas, 2) no supervisadas y 3) una combinación de métodos no supervisados y supervisados. La figura 6 
muestra la distribución de los métodos por categoría. Se calculó la proporción sobre el número total de métodos. En 
este cálculo se omitió el trabajo de [40] por ser considerados como un valor atípico del recuento, ya que los autores 
no utilizaron  algoritmos de ML sino que se abocaron a realizar una revisión de todos los métodos conocidos para 
realizar InSAR (dentro de los cuales estudiaron algoritmos de ML). 

 
Figura 6. Distribución de los métodos de ML por categoría. El histograma muestra el porcentaje de artículos que 

utilizaron algoritmos supervisados, no supervisados o una combinación de ellos, por categoría. 

En cuanto a los métodos de ML, se identificó una preeminencia de métodos supervisados, particularmente en 
estudios que utilizaron series temporales DInSAR para la predicción y detección de cambios en fenómenos 
geológicos, como deslizamientos de tierra, deformaciones del terreno y deformación volcánica. Esta tendencia se 
debe a que los métodos supervisados están diseñados para resolver tareas concretas y, para lograrlo, necesitan 
ejemplos etiquetados que les permitan aprender a reconocer patrones similares en nuevos datos. Los métodos no 
supervisados se aplicaron principalmente en temas de monitoreo mediante series temporales, ya sea de estructuras 
como puentes, fallas tectónicas o subsidencia. Esto se debe a que estos algoritmos tienen una mayor utilidad cuando 
se trabaja con grandes volúmenes de datos no clasificados. [62] y [68] utilizaron una combinación de métodos no 
supervisados y supervisados para la detección de deformación tectónica y volcánica. 

Debido a su prominencia, se proporciona un análisis más detallado de los algoritmos empleados con mayor 
frecuencia para el aprendizaje supervisado y no supervisado. La figura 7 muestra la cantidad de veces que los 
documentos utilizaron algoritmos supervisados. A pesar de la amplia gama de algoritmos, los documentos tienden 
a utilizar principalmente unos pocos: las redes neuronales convolucionales (CNN), las redes neuronales de memoria 
a corto y largo plazo (LSTM), las máquinas de soporte vectorial (SVM), los bosque aleatorio (RF), los perceptrones 
de capas múltiples (MLP), las redes neuronales convolucionales profundas (D-CNN) y el aprendizaje profundo 
(DL). Con respecto a las LSTM, se debe tener en cuenta que estas son un tipo especializado de RNN diseñadas para 
abordar el problema de las dependencias a largo plazo. Introducidas por Hochreiter y Schmidhuber en 1997, las 
LSTM utilizan una estructura interna más compleja que le permite a la red aprender y recordar dependencias a largo 
plazo en los datos de entrada. Esto se logra a través de puertas de olvido, entrada y de salida que controlan el flujo 
de información dentro de la memoria de la red. 

Los estudios que adoptaron solo algoritmos de aprendizaje no supervisado (figura 8) utilizaron principalmente auto-
codificadores profundos (DCA) para la selección de datos y k-medias (k-means clustering) para fines de agrupación. 
También se usaron redes neuronales convoluciones no supervisadas (Canet). Además, se analizó la relación entre 
los temas y los métodos (tabla 1). 
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Figura 7. Histograma de las aplicaciones de los algoritmos de machine learning supervisados. 

 
Figura 8. Histograma de las aplicaciones de los algoritmos de machine learning no supervisados. 
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Tabla 1. Algoritmos de ML usados en interferometría radar. Para cada tema, mostramos el algoritmo usado en el 
análisis. Se ha colocado entre paréntesis el número de publicaciones para algoritmos con más de una aplicación en 

el mismo tema. Si una publicación usa más de un método, se agrupan en el mismo tema. Abreviaciones: AG: 
algoritmos genéticos, BRT: árboles de regresión impulsados, CA: análisis de clúster, Cadet: redes neuronales no 

supervisadas, CART: árbol de clasificación y regresión, CNN: red neuronal convolucional, D-CNN: redes 
neuronales convolucionales profundas, DANNs: redes neuronales artificiales dinámicas, DL: aprendizaje 

profundo, DLT: transformadores en el aprendizaje profundo, FCNN: redes neuronales completamente conectadas, 
GAN: redes generativas adversariales, GBM: modelo de impulso generalizado, GRU: redes neuronales 

recurrentes bidireccionales con unidades recurrentes gateadas, LSTM: redes neuronales de memoria a corto y 
largo plazo, MAP: máxima a posteriori, Mask R-CNN: redes neuronales convolucionales basadas en regiones con 

máscaras, MaxEnt: máxima entropía, MB: enfoque basado en modelo, MLP: perceptrones de capas múltiples, 
MV: máxima verosimilitud, RF: Bosque aleatorio, RNA: redes neuronales artificiales, RNC: redes neuronales 

conmutadas, RNN: red neuronal recurrente, SVM: máquinas de soporte vectorial, TL: aprendizaje de 
transferencia, UMAP: aproximación y proyección uniforme de variedades, XGB: refuerzo extremo de gradiente o 

XGBoost. 

 

3.5 Patrones en la selección de parámetros 
En esta sección, se analizaron patrones en la selección de los parámetros, tanto en ML supervisado como no 
supervisado. En el aprendizaje supervisado, se investigó la información reportada sobre el entrenamiento y las 
pruebas. Aunque la elección de los parámetros tiene un impacto importante en los resultados, se encontró que a 
menudo los autores no detallan adecuadamente el proceso de selección de parámetros de entrenamiento y de prueba. 
De los que sí lo hicieron, la mayoría dividió los datos en dos conjuntos: el conjunto de datos de entrenamiento (que 
comprendía generalmente entre el 70% y el 80% de los datos), y el conjunto de datos para las pruebas (entre el 20% 
y el 30% del total de los datos). Algunas de las publicaciones en las que se realizaron análisis temporales optaron 
por dividir los datos de entrenamiento y pruebas por año (por ejemplo [1] y [29]). Otros autores utilizaron tres 
conjuntos de datos: uno para la capacitación, otro para la validación y otro para las pruebas [20], [32] y [50]. Pocos 
artículos informaron sistemáticamente sobre la selección de los hiperparámetros, y hasta el momento no existe un 
estándar común. Por ejemplo, ningún autor usó viñetas para enumerar los hiperparámetros de los diferentes 
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algoritmos. [5], [10], [25], [36], [39], [41] y [64] emplearon tablas para informar sobre los hiperparámetros y sobre 
la arquitectura de NN. Sin embargo, la gran mayoría de los artículos no lo hicieron ni dieron detalles sobre la 
arquitectura del modelo. Aquellos autores que sí especificaron los hiperparámetros, lo hicieron principalmente en 
el cuerpo del texto en lugar de hacerlo en un forma detallada y sistemática a través de tablas o figuras, lo que dificulta 
la lectura de la información. Este hallazgo estaba en línea con críticas anteriores sobre la falta de información clara 
de los hiperparámetros en redes neuronales artificiales [31]. 

Con respecto a los trabajos que emplearon ML no supervisado, se analizó cómo se desarrollaron tanto la agrupación 
como el análisis de componentes principales (PCA). Para los algoritmos de agrupamiento, se distinguieron dos 
enfoques: (i) determinar el número óptimo de conglomerados mediante el uso de algoritmos sistemáticos, (ii) 
determinar manualmente el número de conglomerados y luego que el algoritmo asigne los datos a cada 
conglomerado. Dentro de la primera categoría (i), [25] y [68] seleccionaron el número óptimo de grupos utilizando 
el coeficiente de partición y la entropía de clasificación. Varios autores, [14], [64] y [65], emplearon clusterogramas 
para identificar grupos de k-medias. Este método consiste en trazar una serie de valores potenciales de k. En estos 
casos, el número óptimo de grupos de k-medias se evaluó utilizando el coeficiente de silueta desarrollado por [63]. 
En la segunda categoría (ii), [68] seleccionó el número de grupos basándose en evaluaciones empíricas de los casos 
de estudio . 

En relación con el análisis de componentes principales (PCA), esta técnica fue utilizada para facilitar la 
interpretación de los datos y optimizar el rendimiento de los modelos. Los estudios [14], [64] y [65] aplicaron el 
PCA como paso previo al agrupamiento, permitiendo identificar las variables que explicaban la mayor parte de la 
varianza en los conjuntos de datos. En todos estos casos, se utilizó el criterio de Kaiser, que es una regla empírica 
que ayuda a decidir cuántos componentes retener. 

Este análisis pone de manifiesto la necesidad de avanzar hacia criterios más sistemáticos y claramente documentados 
en la selección de parámetros en modelos ML aplicados a InSAR, lo cual resultaría clave para mejorar la 
reproducibilidad de los experimentos y facilitar comparaciones entre estudios. 

4 Conclusiones 
En este trabajo se propuso revisar el estado del arte de la IG aplicada a la InSAR. Como este es un campo del saber 
emergente y en rápido desarrollo, se llevó a cabo una revisión exploratoria para (i) mapear los temas más destacados, 
fuentes de datos, algoritmos de aprendizaje automático y enfoques para la selección de parámetros, (ii) determinar 
los desafíos en la aplicación del aprendizaje automático en InSAR, (iii) identificar vacíos de conocimiento para 
orientar a las futuras investigaciones. Se revisaron trabajos que abarcan diferentes algoritmos de ML en todos los 
aspectos de los procesamientos interferométricos, divididos en las categorías de métodos supervisados y no 
supervisados. El análisis de los documentos permitió crear una clasificación de enfoques de aprendizaje automático 
según temas, métodos y fuentes de datos. 

Se destacan tres conclusiones principales de este estudio. En primer lugar, mencionar que todavía hay amplias 
oportunidades para evolucionar en este campo del saber, investigando temas faltantes o trabajando en estudios de 
casos interdisciplinarios o comparativos. A medida que el aprendizaje automático y la IA se hacen más populares, 
sus aplicaciones permitirán resolver problemas en cuestiones relacionadas con las ciencias de la Tierra, como la 
prevención de catástrofes y la mitigación de daños. Segundo, aún existe la necesidad de estandarizar la selección de 
datos, algoritmos y parámetros, ya que las comparaciones sistemáticas de la selección de datos y algoritmos pueden 
ayudar a explorar la importancia de estos métodos y los impactos de los resultados, aumentando la reproducibilidad 
y transparencia de los trabajos. Tercero, el aprendizaje automático espacial se beneficiará de una integración de los 
distintos tipos de datos, permitiendo procesos de análisis más significativos. 

Mediante este trabajo, se pretende que la comunidad científica pueda utilizar esta revisión como una guía para 
comprender qué enfoques y conjuntos de datos se han utilizado para abordar qué tipos de problemas, y que el análisis 
presentado ayude a comprender de manera integral el uso de la IG aplicada a los datos geoespaciales. También, se 
identificaron algunas áreas prometedoras para incursionar en investigaciones futuras, desde la necesidad de más 
estudios comparativos hasta una mejor comprensión del impacto de la selección de conjuntos de datos, algoritmos 
o parámetros. En este estudio, se hizo hincapié en la necesidad de fomentar enfoques de aprendizaje automático más 
fácilmente explicables e invertir en la transferencia de conocimientos para ayudar a difundir estas herramientas que 
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mejoran la calidad de los análisis espaciales, a fin de permitirle a los equipos de investigadores abordar mejor los 
numerosos desafíos a los que se enfrentan. 

Los resultados de este trabajo subrayan que, si bien los modelos supervisados han sido ampliamente utilizados, los 
modelos híbridos emergen como una solución prometedora que combina lo mejor de ambos enfoques para mejorar 
la precisión en la detección de deformaciones en InSAR. Nuestro análisis revela que la integración de aprendizaje 
automático con técnicas InSAR no solo incrementa la precisión de las detecciones, sino que también abre nuevas 
oportunidades para el monitoreo geoespacial en regiones con escasez de datos clasificados. Se recomienda explorar 
más a fondo el uso de estos modelos híbridos y auto-supervisados, así como el desarrollo de criterios estandarizados 
para evaluar la efectividad de estos enfoques. Esto podría allanar el camino hacia mejores aplicaciones de la 
inteligencia geoespacial. 
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